#### Sok: A Minimalist Approach to Formalizing Analog Sensor Security



**Chen Yan, Hocheol Shin, Connor Bolton**, Wenyuan Xu, Yongdae Kim, Kevin Fu



♠ ※ 测 ૯ 4

We thank our shepherd Prof. Brendan Dolan-Gavit and the anonymous reviewers for their constructive feedback. This work was supported in part by the ZJU-OPPO-OnePlus Joint Innovation Center, NSF CNS-1330142, a gift from Analog Devices Inc., and by an award from Mcity at University of Michigan. The views and conclusions contained in this paper are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the ZJU-OPPO-OnePlus Joint Innovation Center, NSF, Analog Devices, or Mcity.



S&P 2020 SoK: A Minimalist Approach to Formalizing Analog Sensor Security

#### Sensors are everywhere!





S&P 2020

SoK: A Minimalist Approach to Formalizing Analog Sensor Security

#### **Transduction Attacks:**

#### Attacks that use physical signals to induce untrustworthy sensor output



The New York Times

With a Laser, Researchers Say They Can Hack Alexa, Google Home or Siri

Sugawara, Takeshi, et al. "Light Commands: Laser-Based Audio Injection Attacks on Voice-Controllable Systems."



The New York Times

It's Possible to Hack a Phone With Sound Waves, Researchers Show

Trippel, Timothy, et al. "WALNUT: Waging doubt on the integrity of MEMS accelerometers with acoustic injection attacks." *IEEE EuroS&P*, 2017



Zhang, Guoming, et al. "DolphinAttack: Inaudible voice commands." *ACM CCS* 2017.

S&P 2020

#### MIT Technology Review

Secret Ultrasonic Commands Can Control Your Smartphone, Say Researchers

Smart devices are vulnerable to inaudible voice attacks.



#### New attack on autonomous vehicle sensors creates fake obstacles

Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." *ACM CCS*, 2019.



Sounds can knock drones out of the sky

PCWorld NEWS Son, Yunmok, et al. "Rocking drones with intentional sound noise on gyroscopic sensors." USENIX 2015.



COMMUNICATIONS OF THE ACM | FEBRUARY 2018

DOI:10.1145/317640

Inside Risks Risks of Trusting the Physics of Sensors Protecting the Internet of Things with embedded security.



SoK: A Minimalist Approach to Formalizing Analog Sensor Security

## Transduction Attacks:

Challenges

Sensors are ubiquitous and heterogeneous Varying attack signals, sensors, goals

Vocabulary and terminology differences

We found that there were conceptual similarities, but we lacked a simple way to express those similarities.





#### **Contributions:**

- 1. Simple Sensor Security Model
- 2. Tranduction attack systemization
- 3. Defense systemization
- 4. Prediction methodology for attacks and defenses.



#### What are commonly inside a sensor?



S&P 2020



Ś

#### How do transduction attacks work?



S&P 2020



7

Ŷ

**General Ideas** 





**Transfer Function Representation** 





Ŵ

Transfer Function Representation: Microphone Example





Ŷ

Adversaries in the Model





Example: DolphinAttack (Zhang et al., CCS 2017)



**Common Attack Steps** 





Signal Injection Step (3 factors)



#### Signal Type

**Pre-transducer:** RF signal, light, sound, magnetic, electric... **Post-transducer:** RF signal

#### Signal Frequency

In-band vs. out-of-band

| Sensor               | Expected Operating Band | Attack Frequency |  |  |  |  |
|----------------------|-------------------------|------------------|--|--|--|--|
| MEMS Inertial Sensor | ≤ 750 Hz                | > 1kHz           |  |  |  |  |
| Microphone           | ≤ 20 kHz                | > 20 kHz         |  |  |  |  |



Measurement Shaping Step (5 types)



#### **Intermodulation Distortion**



S&P 2020

#### **Envelope Detection**





#### Example: 1) DolphinAttack & 2) Ghost Talk



**Summary** 

#### TABLE II: SYSTEMATIZATION OF TRANSDUCTION ATTACKS WITH THE SIMPLE SENSOR SECURITY MODEL.

| Sensor                      |                                      |                        | E                          | Signa                | ıl Inje         | ection                                  | Μ   | easure                    | ment                                                  | Shapi | ng               | Outcome                     |                   | D              |                      |                        |              |                       |
|-----------------------------|--------------------------------------|------------------------|----------------------------|----------------------|-----------------|-----------------------------------------|-----|---------------------------|-------------------------------------------------------|-------|------------------|-----------------------------|-------------------|----------------|----------------------|------------------------|--------------|-----------------------|
| Application                 | Туре                                 | С                      | Trans.                     | Wire                 | Amp.            | Filter                                  | ADC | Point                     | Type                                                  | Freq. | Sat.             | IMD                         | Fil.              | Env.           | Ali.                 | DoS                    | Spoof        | Paper                 |
|                             | Lider                                | ^                      |                            | 0                    | •               | 0                                       | 0   | Dro                       | 344                                                   | In    | •                | 0                           | 0                 | 0              | 0                    | •                      | 0            | [45]                  |
| obile                       | Liuai                                | Α                      | •                          | 0                    | U               | 0                                       | 0   | Fle                       | *                                                     | ш     | 0                | - ō -                       | 0                 | - <u> </u>     | 0                    | - ō -                  | - ē -        | [45], [46]            |
|                             | Camera                               | P                      | •                          | 0                    | O               | 0                                       | 0   | Pre                       | *                                                     | In    | ٠                | 0                           | 0                 | 0              | 0                    | •                      | 0            | [46], [70]            |
|                             | Padar                                | Δ                      |                            | $\cap$               | •               | 0                                       | 0   | Dro                       | 8                                                     | In    | O                | 0                           | 0                 | 0              | 0                    | •                      | 0            | [70]                  |
| Ho                          | Kauai                                |                        | •                          | 0                    | U               | 0                                       | 0   |                           | *                                                     | m     | 0                | -ō-                         | 0                 | - ō -          | 0                    | - ō -                  | - <u>-</u> - | [70], [95]            |
| Aut                         | Ultrasonic Sensor                    | А                      | •                          | 0                    |                 | 0                                       | 0   | Pre                       | (ه                                                    | In    |                  | _0_                         | _0_               | _0             | _0_                  | _ • _                  |              | [68], [70]            |
|                             |                                      |                        | -                          |                      | •               | 0                                       | 0   |                           |                                                       |       | 0                | 0                           | 0                 | 0              | 0                    | 0                      | •            | [68], [70]            |
|                             | Magnetic Encoder                     | Α                      | •                          | 0                    | 0               | 0                                       | 0   | Pre                       | U                                                     | In    | 0                | 0                           | 0                 | 0              | 0                    |                        | •            | [96], [97]            |
| Sensor<br>Categories        |                                      |                        | Exploited<br>Component     |                      |                 |                                         |     | Signal<br>Inject<br>Steps |                                                       |       | М                | eas<br>Sh<br>S <sup>i</sup> | ure<br>api<br>tep | me<br>ng<br>s  | nt                   |                        | Outcome      | Paper                 |
| S                           | Microphone                           | P                      | •                          | •                    | •               | •                                       | •   |                           |                                                       |       |                  |                             |                   |                |                      |                        |              | [4/]<br>[100] [102] - |
|                             |                                      |                        |                            |                      |                 |                                         |     | Pre                       | •)                                                    | Out   | - <del>0</del> - |                             | 0-                | -0-            | 0-                   | - ō -                  | -ĕ-          | [80], [90]-[92]       |
|                             | Touchscreen                          | Α                      | •                          | 0                    | 0               | O                                       | 0   | Pre                       | 4                                                     | N/A   | 0                | 0                           | O                 | 0              | 0                    | •                      | •            | [103]                 |
| Hard Disk                   | MEMS Shock Sensor                    | P                      | •                          | 0                    | O               | •                                       | 0   | Pre                       | (ه                                                    | Out   | 0                | 0                           | •                 | 0              | 0                    | 0                      | •            | [86]                  |
| Energy                      | Infrared Sensor                      | P                      | 0                          | ٠                    | 0               | O                                       | •   | Post                      | Â                                                     | Out   | •                | 0                           | O                 | 0              | 0                    | 0                      | 0            | [75], [76]            |
| Medical                     | Pacemaker Lead<br>Defibrillator Lead | P                      | 0                          | •                    | 0               | 0                                       | 0   | Post                      | â                                                     | In    | 0                | 0                           | 0                 | 0              | 0                    | 0                      | •            | [47]                  |
| Devices                     | Drop Counter                         | Α                      | •                          | 0                    | O               | 0                                       | 0   | Pre                       | *                                                     | In    | ٠                | 0                           | 0                 | 0              | 0                    |                        | •            | [87]                  |
| ₩ Visible li<br>C. Category | s 🔹 A                                | Audible<br>or <b>P</b> | e sound<br><b>re</b> Pre-1 | or ultra<br>transduc | isound<br>cer P | U Magnetic field<br>ost Post-transducer |     |                           | ✓ Electric field● ApplicableIn In-bandOut Out-of-band |       |                  |                             |                   | O Pro<br>N/A N | obable<br>ot availab | ○ Not applicable<br>le |              |                       |

SoK: A Minimalist Approach to Formalizing Analog Sensor Security



#### **Defense Systemization**

**Detection and Prevention** 







## Defense Systematization:

Detection

S&P 2020





## **Defense Systematization:**

Prevention



S&P 2020

SoK: A Minimalist Approach to Formalizing Analog Sensor Security

#### Defense systematization

| Goal | Cat                         | Subcat.           |    | ]      | Relate   | d Com | pone     | nt   |                   | Injection and Shaping Steps X |                           |            |             |      |      |      |               | er <sup>1</sup> Paper        |  |
|------|-----------------------------|-------------------|----|--------|----------|-------|----------|------|-------------------|-------------------------------|---------------------------|------------|-------------|------|------|------|---------------|------------------------------|--|
| UUai | Cat.                        |                   | ΤX | Trans. | Wire     | Amp.  | Fil.     | ADC  | Dig. <sup>2</sup> | Point                         | Freq.                     | Sat.       | IMD         | Fil. | Env. | Ali. | Func.         | i apei                       |  |
|      | ÷                           | TX randomiz.      | •  | 0      | 0        | 0     | 0        | 0    | •                 | Both                          | Both                      | 0          | 0           | 0    | 0    | 0    |               | [68], [87], [106]            |  |
| uo   | jec                         | Verif. Actuation  | •  | 0      | 0        | 0     | 0        | 0    | •                 | Both                          | Both                      | 0          | 0           | 0    | 0    | 0    |               | [47], [107]                  |  |
| ecti | Ч                           | Detect OOB Sig.   | 0  | •      | 0        | 0     | 0        | 0    | •                 | Pre                           | Out                       |            | 0           | 0    | 0    | 0    | N/A           | [44], [86]                   |  |
| Goal | Category and<br>Subcategory |                   |    | Relat  | ed (     | Comp  | oon      | ent( | s)                | In                            | jecti                     | on a<br>St | and<br>teps | Sha  | apin | g    | Xfer Function | Paper                        |  |
|      | uo                          | Spatial Fusion    | •  |        | <u> </u> | •     | <u> </u> | •    | •                 |                               |                           |            |             |      |      |      | P3<br>P1 P3   | [44], [45], [68], [70], [86] |  |
|      | iusi                        | Temporal Fusion   |    |        | 0        | 0     | 0        | 0    |                   |                               | Steps differ case by case |            |             |      |      |      | P1            | [46] [68] [98]               |  |
|      | Com                         | n Quality Improv  |    |        |          |       |          |      |                   |                               |                           |            |             |      |      |      | P1            | [40], [00], [90]             |  |
|      | Com                         | p. Quanty miprov. |    |        | -        | -     | -        | -    | U                 | 2                             |                           |            |             |      |      |      | <b>.</b> .    | [+2], [++], [37]             |  |

TABLE III: SYSTEMATIZATION OF TRANSDUCTION ATTACK DEFENSES

<sup>1</sup> Denotes the three xfer func. models of Section V-B. <sup>2</sup> Digital Backend <sup>3</sup> Attack Surface Reduction

S&P 2020

• Applicable  $\bigcirc$  Not applicable

KAIST

#### SoK: A Minimalist Approach to Formalizing Analog Sensor Security



#### **Prediction: Attacks** Example: Part ① DolphinAttack



S&P 2020 SoK: A Minimalist Approach to Formalizing Analog Sensor Security



#### **Prediction: Attacks**

Example: Part 2 Walnut









## **Prediction:** Defenses

Example: 1 DolphinAttack & 2 Ghost Talk



#### Conclusion

- 1. Simple Sensor Security Model enables easier comparison of transduction attacks
- 2. Our systemization reveals how several attacks and defenses on different sensors can be conceptually similar
- 3. Analysis of past attacks via our model hints at future attacks and how to defend against them



#### Sok: A Minimalist Approach to Formalizing Analog Sensor Security



Chen Yan, Hocheol Shin, Connor Bolton, Wenyuan Xu, Yongdae Kim, Kevin Fu Join us afterwards for a discussion on sensor security!

Contact the authors at: <u>vanchen@zju.edu.cn</u> <u>h.c.shin@kaist.ac.kr</u> <u>mcbolto@umich.edu</u> Lab websites: usslab.org syssec.kr spgr.eecs.umich.edu

Author websites: <u>connorbolton.com</u> <u>sites.google.com/site/hocheolshincv</u> <u>cyans.cn</u>

We thank our shepherd Prof. Brendan Dolan-Gavit and the anonymous reviewers for their constructive feedback. This work was supported in part by the ZJU-OPPO-OnePlus Joint Innovation Center, NSF CNS-1330142, a gift from Analog Devices Inc., and by an award from Mcity at University of Michigan. The views and conclusions contained in this paper are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the ZJU-OPPO-OnePlus Joint Innovation Center, NSF, Analog Devices, or Mcity.

S&P 2020 SoK: A Minimalist Approach to Formalizing Analog Sensor Security

