The Catcher in the Field: A Fieldprint based Spoofing Detection for Text-Independent Speaker Verification

Chen Yan, Yan Long, Xiaoyu Ji, Wenyuan Xu Zhejiang University

Voice biometrics - "My voice is my identity"

□ Unique human voice -> Identity

□ Speaker recognition & verification

Device unlock, voice assistant, account login, banking, ...

Is voice biometrics as **sound** as it sounds?

	Voice can be faked by attackers							
	Sub THE WALL STREET JOURNAL. English Edition * October 30, 2019 Print Edition Video Home World U.S. Politics Economy Business Tech Markets Opinion Life & Arts Real Estate WSJ. Magazine							
BREAKING	KING NEWS Pace of U.S. economic growth slowed slightly to 1.9% in third quarter as business investment declined, though consumer spe	ending kept growth on track						
share AA	PRO CYBER NEWS Fraudsters Used AI to Mimic CEO's Voice in Unusual (Scams using artificial intelligence are a new challenge for companies	Cybercrime Case						

□ Voice spoofing attacks:

- Replay
- Voice synthesis
- Voice conversion

Attacks made easier with off-the-shelf tools

Our goals

Detect voice spoofing attacks

Applicable to smartphones

□ Balance security & usability

- Text-independent
- No extra device
- User-defined device positions

Key insight 1

Research questions

Can the sound fields of authentic users and spoofing attackers be different?

Q1 Simulation of sound fields in MATLAB

(A) Effect of the size of the sound source

Larger size \rightarrow More directional

What is the difference of human and loudspeaker in size as sound sources?

Q1 Human and loudspeaker in size

Q1 Simulation of sound fields in MATLAB

Research questions

Can the sound fields of authentic users and spoofing attackers be different?

Q2 How to extract fieldprints from sound fields without using devices other than a smartphone?

Q2 Fieldprint formulation

□ Limited number of microphones on a smartphone (mostly 2~3)

□ Difference of acoustic energy (sound frequency f) at the 2 microphone locations (p_1 , p_2):

> $S_R(p_1, p_2, f) = \log \frac{S(p_1, f)}{S(p_2, f)}$ \leftarrow Sound pressure at Mic 1 \leftarrow Sound pressure at Mic 2

□ Basic fieldprint:

 $\mathcal{F}(\boldsymbol{p_1}, \boldsymbol{p_2}) = [S_R(\boldsymbol{p_1}, \boldsymbol{p_2}, f_1), S_R(\boldsymbol{p_1}, \boldsymbol{p_2}, f_2), \dots, S_R(\boldsymbol{p_1}, \boldsymbol{p_2}, f_n)]$

Q2 Fieldprint formulation

□ Basic fieldprint:

 $\mathcal{F}(\boldsymbol{p_1}, \boldsymbol{p_2}) = [S_R(\boldsymbol{p_1}, \boldsymbol{p_2}, f_1), S_R(\boldsymbol{p_1}, \boldsymbol{p_2}, f_2), \dots S_R(\boldsymbol{p_1}, \boldsymbol{p_2}, f_n)]$ $= \left[\log \frac{S(p_1, f_1)}{S(p_2, f_1)}, \log \frac{S(p_1, f_2)}{S(p_2, f_2)}, \dots, \log \frac{S(p_1, f_n)}{S(p_2, f_n)} \right]$ $= [\log(S(p_1, f_1)) - \log(S(p_2, f_1)), \log(S(p_1, f_2)) - \log(S(p_2, f_2)),$..., $\log(S(p_1, f_n)) - \log(S(p_2, f_n))]$ = $[\log(S(p_1, f_1)), \log(S(p_1, f_2)), \dots, \log(S(p_1, f_n))]$ $-[\log(S(p_2, f_1)), \log(S(p_2, f_2)), \dots, \log(S(p_2, f_n))]$ $= \log(FFT(< \text{sound at } p_1 >)) - \log(FFT(< \text{sound at } p_2 >))$

Fieldprint formulation - Benchmark experiment Q2

FFT of a Phoneme Recorded at Two Microphone Locations Amplitude (dB) -40 -09 Side Front Frequency (kHz) Difference of the FFT at the Two Microphone Locations Moving Mean Raw Amplitude (dB) -10

Frequency (kHz)

Research questions

Can the sound fields of authentic users and spoofing attackers be different?

How to extract fieldprints from sound fields without using devices other than a smartphone?

Q3 To what degree do fieldprints show consistency and distinctiveness?

Q3 Fieldprint consistency and distinctiveness

Consistency

- The ability to be consistent
- <u>Text-independent:</u> effect of the speech content
- <u>Microphone location</u>: effect of the microphone locations

Distinctiveness

- The ability to be distinctive between <u>human and loudspeakers</u>
- The ability to be distinctive between <u>different people</u>?

Q3 Fieldprint consistency – Speech content

Challenge
Fieldprint changes with the speech content (phoneme)

□ Solution: define LTAF

The human voice may approach a more phonetically balanced state for words and sentences

Long-Time Average Fieldprint (LTAF) $\mathcal{F}_{LTA}(p_1, p_2) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{F}_i(p_1, p_2)$

Q3 Fieldprint consistency – Speech content

Time duration

LTAF becomes more stable with a longer time duration

Text-independent The LTAFs of 5 different sentences are similar, especially below 4 kHz

Q3 Fieldprint consistency – Microphone locations

Fieldprint is consistent to modest microphone displacement

Q3 Fieldprint distinctiveness

Between different people

Long-Time Average Fieldprints of a Person and 3 Loudspeakers Amplitude (dB) 0 10 05 LS1 LS2 P1 LS3 10 0 2 3 7 9 6 8 5 Frequency (kHz)

Q3 Fieldprint distinctiveness

Fieldprint observations

Consistency

- Consistent as Long-Time Average Fieldprint (LTAF)
- Text-independent
- Consistent to modest microphone displacement

Distinctiveness

Distinctive between human & loudspeakers and between people

Usability

- No extra device
- User-defined device positions

Design - "The catcher in the (sound) field"

• CaField: a spoofing detection system based on fieldprints

Design – Modules

□ Fieldprint Extraction

- LTAF per command
- Low-dimensional features
- Filterbank (n bandpass filters)
- n dimensional feature vector

Fieldprint matching

- □ Gaussian Mixture Model (GMM)
- □ Likelihood value
- Predefined threshold

Evaluation – Dataset

Human voice dataset

- 20 participants (6 female & 14 male)
- 2 types of device positions (side & front)
- Voice commands: 10 for enrollment & 40 for verification
- Total: 2,000 commands

□ Spoofing attack (replay) dataset

- 8 loudspeakers of various sizes and qualities
- 2 types of device positions (side & front)
- Total: 16,000 spoofing commands

Metrics

• Accuracy, Equal Error Rate (EER), False Acceptance Rate (FAR), False Rejection Rate (FRR)

Evaluation – Dataset

Human voice dataset

- 20 participants (6 female & 14 male)
- 2 types of device positions (side & front)
- Voice commands: 10 for enrollment & 40 for verification
- Total: 2,000 commands

□ Spoofing attack (replay) dataset

- 8 loudspeakers of various sizes and qualities
- 2 types of device positions (side & front)
- Total: 16,000 spoofing commands

Metrics

Evaluation – Overall performance

- Detecting spoofing attacks
- Differentiating human speakers

Function	Accuracy	FAR	FRR	EER
Detect spoofing attacks	99.16%	0.82%	0.97%	0.85%
Differentiate human speakers	98.42%	1.87%	1.43%	1.84%

CaField is highly effective in detecting spoofing attacks and differentiating different people

Evaluation – Overall performance

Detecting spoofing attacks

□ Differentiating human speakers

ROC curves of 5 participants in spoofing detection Feature separation of 20 participants with t-SNE

Evaluation – Factors affecting spoofing detection

- System parameters
- Smartphone position
- Smartphone distance
- Type of loudspeaker
- Recording smartphone

More filters in the filterbank \rightarrow higher performance Freq. boundary > 5 kHz \rightarrow performance slightly drops

Impact of smartphone position

CaField achieves a higher performance when the smartphone is on the side of the user

Position	Accuracy	FRR	FAR	EER
Front	98.74%	2.01%	1.16%	1.28%
Side	99.72%	0.63%	0.34%	0.38%

Conclusion

- Discovered the difference of sound fields between authentic users and spoofing attacks, and designed fieldprint
- Designed CaField, a fieldprint-based spoofing detection system
- Evaluation showed high performance in detecting attacks

Future work

- Arbitrary device positions across sessions
- Replicating sound field with human-shaped loudspeakers