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Voice biometrics - “My voice is my identity”

3 Unique human voice -> Identity

Q Speaker recognition & verification

A Device unlock, voice assistant, account login, banking, ...
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Is voice biometrics as sound as it sounds?

B A

Voice can be faked by attackers 2 Voice spoofing attacks:
THE WALL STREET JOURNAL * Replay

i wth slowed slightly to 1.9% in third quarter as business investment declined, though consumer spending kept growth on track

* Voice synthesis
% Fraudsters Used Al to Mimic CEQ’s Voice in Unusual Cybercrime Case

AA Scams using artificial intelligence are a new challenge for companies
TEXT

®* \/oice conversion

d Attacks made easier with
off-the-shelf tools
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Our goals

B A |

d Detect voice spoofing attacks

A Applicable to smartphones

d Balance security & usability
* Text-independent

* No extra device

* User-defined device positions
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Key insight 1
Authentic User

Bob Attacker’s loudspeaker
Replay :- Key of detection
d
Synthesis
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Key |nS|ght 2 A sound fielq describes the dispersion of
— acoustic energy over space

|
Authentic User Spoofing Attack

Attacker’s loudspeaker
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Research questions

B A

Can the sound fields of authentic users and spoofing
attackers be different?
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Simulation of sound fields in MATLAB
Y A
(A) Effect of the size of the sound source
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Human and loudspeaker in size
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Simulation of sound fields in MATLAB
——
(A) Effect of the size of the sound source (B) Effect of the sound wavelength
Increased size > Decreased wavelength —>
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Research questions

B A

Can the sound fields of authentic users and spoofing
attackers be different?

How to extract fieldprints from sound fields without using
devices other than a smartphone?

11



Fieldprint formulation

[ |

Q_} Microphone 1

| @ Microphone 2

-2

A Limited number of microphones on a smartphone
(mostly 2~3)

A Difference of acoustic energy (sound frequency f)
at the 2 microphone locations (p1, p2):

S(p1.f) <«— Sound pressure at Mic 1
S(P2,f) «— Sound pressure at Mic 2

Sr(P1, D2, f) =log

A Basic fieldprint:
F(p1,02) = [SrR(P1, D02, 1), SR®1, P2, f2), -, SR(D1, P2, )]

12



Fieldprint formulation

A Basic fieldprint:

F(P1,02) = [Sk(P1, P2, 1), SR1, P2, f2), .- SR(P1, P2, fr)]

_ [ S(plrfl) S(pler) S(pl:fn)
= 198505, 198 50 ) 0 108 s<pz,fn>]

., 10g(S(p1, f)) —log(S(p2, )]

log(S(P1, f1)), 10g(S(@1. f2)), -, 10g(S(P1, fi))]
—[log(S(p2, f1)), 10g(SP2, f2)), ..., 10g8(S(®2, f))]

= log(FFT(< sound at p; >)) — log(FFT(< sound at p; >))

log(S(p1, f1)) — log(S(p2, f1)), log(S(p1, f2)) — log(S(p2, 1)),
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Fieldprint formulation - Benchmark experiment

Y A
FFT of a Phoneme Recorded at Two Microphone Locations
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Research questions

Can the sound fields of authentic users and spoofing

attackers be different?

How to extract fieldprints from sound fields without using

Q2
oz devices other than a smartphone?

To what degree do fieldprints show consistency and
distinctiveness?

15



Fieldprint consistency and distinctiveness

d Consistency
* The ability to be consistent

* Text-independent: effect of the speech content

* Microphone location: effect of the microphone locations

A Distinctiveness

* The ability to be distinctive between human and loudspeakers

* The ability to be distinctive between different people?

16
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Fieldprint consistency — Speech content

| - Denoised Fieldprints of 5 Phonemes
3 Challenge ) R E———
;20 B
Fieldprint changes with the E
speech content (phoneme) §1° |
O 1l 2l C; t;f £IS 6 7 8- 9 10
. . Frequency (kHz)
3 Solution: define LTAF
The human voice may Long-Time Average Fieldprint (LTAF)
approach a more phonetically 1 &
balanced state for words and Frra(®@1,p2) = EE Fi(p1,p2)
sentences =1

17
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Fieldprint consistency — Speech content

Y A
Distance of LTAF between Contiguous Time Durations

o 100
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. =
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Fieldprint consistency — Microphone locations

|
Experiment setup Fieldprints in colormap
Forward (dB)
10 g T 740
U Fieldprint 1 —5->
A : : R 120
, Fieldprint 2 —L> ——
*\ O 5 N
g A § 0
Sideward Forward Fieldprint 3 —&>

-20

Distance
N

‘«»

-40
0O 2 4 6 8

Frequency (kHz)

Fieldprint is consistent to modest microphone displacement
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Fieldprint distinctiveness

Between human and IOUdSpeake IS Long-Time Average Fieldprints of a Person and 3 Loudspeakers
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Fieldprint distinctiveness

¥ 1 person & 3 loudspeakers, same content

- P9 LS1 LS2 LS3 |
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Fieldprint observations

d Consistency

* Consistent as Long-Time Average Fieldprint (LTAF)
* Text-independent

* Consistent to modest microphone displacement
d Distinctiveness

® Distinctive between human & loudspeakers and between people

3 Usability

* No extra device
* User-defined device positions

22
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Design - “The catcher in the (sound) field”

[ |

« CaField: a spoofing detection system based on fieldprints

v Stage 1: Speaker Enroliment

= O e —> —>

Signal Fieldprint S Training Speaker

’)) 5 @M_) Processing || Extraction Algorithm Model
Speaker
Model

— 0 _
P M- —> Signal Fieldprint Fieldprint Decision
))) = § -4 | Processing | | Extraction Matching Logic

Stage 2: Speaker Verification
> _~> Claimed identity= == =========-==-===---
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Design — Modules

. . . Lower limit Upper limit
3 Fieldprint Extraction s |
30I i | II | | | |

® LTAF per command o

. . P b -
* Low-dimensional features S /\/ /\/\—\/f/\’\/\
* Filterbank (n bandpass filters) gv ;/l/ _

(0 s e e S B N S

111 121 131 141 15 6 7 8 9 10

* n dimensional feature vector of 11 f2f i3 lal !
i 1 1 1 i i 1 Freguehcy (kHz)
AR A R AR A NA
A Fieldprint matching S 20} :
. . E n r
0 Gaussian Mixture Model (GMM) S0 (ﬁa_tug)es
A Likelihood value A 0 I N B
0 1 2 3 4 5

A Predefined threshold Frequency (kHz)
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Evaluation — Dataset

Side position Front position
d Human voice dataset

« 20 participants (6 female & 14 male)

- 2 types of device positions (side & front)

« Voice commands: 10 for enrollment & 40 for verification
 Total: 2,000 commands

A Spoofing attack (replay) dataset

8 loudspeakers of various sizes and qualities
- 2 types of device positions (side & front)

« Total: 16,000 spoofing commands

1 Metrics

 Accuracy, Equal Error Rate (EER), False Acceptance Rate (FAR), False Rejection Rate (FRR) 25
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Evaluation — Dataset

d Human voice dataset
« 20 participants (6 female & 14 male)

- 2 types of device positions (side & front)
« Voice commands: 10 for enrollment & 40 for verification

&) it

—
My

 Total: 2,000 commands

A Spoofing attack (replay) dataset
8 loudspeakers of various sizes and qualities
- 2 types of device positions (side & front)
« Total: 16,000 spoofing commands . =
e C

d Metrics
 Accuracy, Equal Error Rate (EER), False Acceptance Rate (FAR), False Rejection Rate (FRR) 26
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Evaluation — Overall performance

(J Detecting spoofing attacks

 Differentiating human speakers

Detect spoofing attacks 99.16% 0.82% 0.97% 0.85%
Differentiate human speakers 98.42% 1.87% 1.43% 1.84%

CaField is highly effective in detecting spoofing attacks and

differentiating different people

27
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Evaluation — Overall performance

Y A
J Detecting spoofing attacks A Differentiating human speakers
100 |pame= 60
2] i M—————— N
8ol .. . 1100 — 40 »®
_ 7| UTF . S s
g, 601 —EER=0.00% @ 20 . ™ &
r 90| ° —EER=1.54% 3 -
< 40 lff°_°~___§_ EER=1.98% £ 0 #* 4
20 | —EER=3.99% | 20 | .
10 | —EER=6.01% - . &
ol - . T 40 ! 6§ l
0 10 20 30 40 50 60 70 80 90100 50 0 50
FAR (%) Dimension 1

ROC curves of 5 participants in spoofing detection Feature separation of 20 participants with t-SNE
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Evaluation — Factors affecting spoofing detection

e System parameters
« Smartphone position
« Smartphone distance

.Type Of IOUdSpeaker Filter Number

Filterbank Upper Limit (kHz)
° Recording smartphone More filters in the filterbank =—> higher performance

Freq. boundary > 5 kHz —>» performance slightly drops

Impact of smartphone position

CaField achieves a higher Position | Accuracy | _FRR__| _FAR | EER _

performance when the smartphone Front 98.74% 2.01% 1.16% 1.28%
is on the side of the user Side 99.72%  0.63%  0.34%  0.38%
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Conclusion

[ |

A Discovered the difference of sound fields between authentic
users and spoofing attacks, and designed fieldprint

A Designed CaField, a fieldprint-based spoofing detection system

3 Evaluation showed high performance in detecting attacks

d Future work

 Arbitrary device positions across sessions
* Replicating sound field with human-shaped loudspeakers
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