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ABSTRACT
Hundreds of hours of audios are recorded and transmitted over
the Internet for voice interactions such as virtual calls or speech
recognitions. As these recordings are uploaded, embedded biomet-
ric information, i.e., voiceprints, is unnecessarily exposed. This
paper proposes the first privacy-enhanced microphone module (i.e.,
MicPro) that can produce anonymous audio recordings with bio-
metric information suppressed while preserving speech quality for
human perception or linguistic content for speech recognition. Lim-
ited by the hardware capabilities of microphone modules, previous
works that modify recording at the software level are inapplicable.
To achieve anonymity in this scenario, MicPro transforms formants,
which are distinct for each person due to the unique physiological
structure of the vocal organs, and formant transformations are done
by modifying the linear spectrum frequencies (LSFs) provided by a
popular codec (i.e., CELP) in low-latency communications.

To strike a balance between anonymity and usability, we use a
multi-objective genetic algorithm (NSGA-II) to optimize the trans-
formation coefficients. We implement MicPro on an off-the-shelf
microphone module and evaluate the performance of MicPro on
several ASV systems, ASR systems, corpora, and in real-world setup.
Our experiments show that for the state-of-the-art ASV systems,
MicPro outperforms existing software-based strategies that utilize
signal processing (SP) techniques, achieving an EER that is 5 ∼ 10%
higher and MMR that is 20% higher than existing works while
maintaining a comparable level of usability.

CCS CONCEPTS
• Security and privacy → Privacy protections; Usability in
security and privacy.
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Figure 1: MicPro illustration: MicPro protects the privacy of
users at the microphone module level, and it can produce an
anonymous recording with suppressed biometric informa-
tion for applications such as real-time virtual calls.
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1 INTRODUCTION
The advances in speech recognition and sensing technologies have
enabled a boost in voice-controllable systems, speech-to-text de-
vices, and voice assistant services. It has been reported that hun-
dreds of hours of voices are recorded and uploaded to the cloud
per minute [4] by smart speakers, smartphones, video and audio
conference platforms, etc. Since a voice recording contains not
only speech information but also voice biometric information that
can identify a human being (aka. voiceprints), these voice data im-
pose privacy risks where attackers can gain access or the voice
technology companies themselves may misuse it: One can illegally
extract victims’ voiceprint to impersonate them by bypassing au-
thentication [55, 60] or perform identity inference to gain sensitive
information [30, 31].

In this paper, we aim to design anonymization methods that tar-
get low-latency scenarios such as virtual calls. We propose privacy-
by-design paradigms called MicPro1, i.e., privacy-enhanced micro-
phone modules that will produce anonymous audio recordings
without jeopardizing the usability, as shown in Fig. 1. The record-
ings shall preserve linguistic content and sound naturally for a
human being if they ever need to be heard.

1https://github.com/USSLab/MicPro
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Previous anonymization schemes face two challenges in these
scenarios: (1) most of them are incompatible with the low-latency,
frame-by-frame transmissions because they require a full audio
piece instead of a frame as the input. (2) The anonymization process
becomes futile if an attacker can obtain the original audio before
it is anonymized at the software level. For example, an attacker
might be able to compromise the victim’s device and gain control
of the microphone or steal local audio files directly [22, 23]. To
address these issues, MicProworks at the microphone module level
to provide low-latency, low-overhead anonymization. Once MicPro
produces the audio recordings, they can be stored locally or in the
cloud, and they will protect users’ voiceprints.

To the best of our knowledge, this is the first work to develop
microphone modules that can suppress identifiable biometric in-
formation contained within recordings of speech while preserving
speech quality. The idea sounds promising yet challenging. First of
all, MicPro should not require modifying the hardware of existing
microphone modules and have to produce anonymous recordings
in low latency with limited computational capability and embedded
functionality. Prior works that rely on machine learning algorithms,
e.g., voice conversion (VC) [27], voice synthesis (VS) [6, 18], or
adversarial example (AE) [15, 56], imposes heavy computational
overhead and is inapplicable. Meanwhile, MicPro has to strike a
balance between anonymity and usability. Prior works that utilize
signal processing technologies, e.g., vocal tract length normaliza-
tion (VTLN) [28, 33, 41, 42], or McAdams Transformation [21, 39],
cannot well balance the anonymity and usability, i.e., they produce
audios with low anonymity or sometimes sound like robots. To over-
come the aforementioned challenges, MicPro solves the following
two questions.

How to achieve anonymity with existing signal processing tech-
niques? MicPro chooses to exploit existing signal processing algo-
rithms because they can be implemented inside most microphone
modules. Particularly, we utilize a widely used codec named code
excitation linear prediction (CELP) [45] to modify speech signals,
which is designed to support low-latency applications and is the
basis of many codecs, e.g., G.729 [7], AMR [8], and MPEG-4 [37].
Meanwhile, we discovered that one of the key acoustic features to
characterize individual voice biometrics is formants [58]. Formants
are determined by the shape of the vocal tract, which differs due
to the unique physiological structure of the vocal organs among
people. Thus, we propose a voice transformation technique named
formant transformations by modifying linear spectrum frequencies
(LSFs), which are coefficients extracted by CELP and represent the
formant distribution of one’s speech signal. We investigate three
transformation functions that convert original formants to new
ones and thereby change the voiceprint features. Since the con-
version does not change the speaker’s fundamental frequency and
harmonic components, it preserves the speech quality to some
extent.

How to trade off anonymity and usability? It is difficult to achieve
anonymity and usability simultaneously while performing speech
anonymization: A stronger anonymity requires a greater level of
speech modification, which inevitably results in degradation of us-
ability, e.g., lower speech recognition accuracy and less likely to be
human voices. To strike a balance in between, we define usability
to be intelligibility and naturalness and formulate multi-objective

optimization problems. We solve the problem with Non-dominated
Sorting Genetic Algorithm (NSGA-II) and choose feasible solutions
from the Pareto Front. We evaluate the MicPro performance with
three automatic speaker verification (ASV) systems, three automatic
speech recognition (ASR) systems, and four corpora. We implement
MicPro on a Respeaker embedded with G.729 codec to validate its
performance. Our experiments show that for the state-of-the-art
ASV systems, MicPro outperforms existing software-based strate-
gies that utilize signal processing techniques and achieve an EER
that is 5 ∼ 10% higher and an MMR that is 20% higher while main-
taining a similar level of usability.

We summarize our contributions as follows:
• To the best of our knowledge, we propose the first privacy-by-
design microphone modules, which can produce anonymous
audio recordings with biometric information suppressed while
preserving speech quality without hardware modification.

• We design formant transformation algorithms using a generic
CELP codec and formulate optimization problems to determine
the coefficients that can achieve both anonymity and usability,
specifically in virtual calls.

• We implement MicPro on an off-the-shelf microphone, validate
the effectiveness of MicPro, and demonstrate the resistance of
MicPro to various threats.

2 BACKGROUND
2.1 ASV and ASR
Automatic speaker verification systems (ASVs) and automatic speech
recognition systems (ASRs) have been widely used in applications
like voice assistants. They can swiftly identify speakers and rec-
ognize speech content by utilizing the implicit features hidden in
speech signals [26, 29, 34]. These techniques provide a convenient
and user-friendly way to control intelligent devices and pass certi-
fication with a low cost and acceptable efficiency [2, 51]. For the
same speech, ASVs can distinguish the speaker if he or she has been
registered, while ASRs can decode the semantic information and
convert the acoustic signal into text. This is because any speech
spoken by a real speaker conveys both features of the speaker and
the content. To achieve better performance, ASVs and ASRs try to
separate unrelated information and extract the essential features
that are well-suited to their tasks.

For ASVs, classical methods use an acoustic model to extract
speaker embeddings which are still widely used today for its high
accuracy [14, 47]. In addition, the deep neural network also plays a
crucial role in ASVs due to its feasibility of constructing end-to-end
systems [16]. Both these two approaches can achieve state-of-the-
art performance. For ASRs, classical ASRs consist of several modules
like the acoustic model and language model [52]. Recently, end-
to-end ASRs have gradually challenged classical ASRs with higher
performance and more straightforward implementation [3, 5].

2.2 Threat of Voice Privacy Leakage
With the popularity of ASVs and ASRs, many works have raised
concerns about the potential misuse of users’ speech audios. One
of the most vital threats is that these speech systems may leak
users’ voiceprint privacy. The nature of speech for communication
inevitably forces us to expose our voiceprints to others. However,
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these speech systems provide attackers with a convenient way to
attain a person’s voiceprint information and further compromise
privacy security, such as spoofing identity to bypass authentication
or recognizing the speaker of sensitive content. To better illustrate
the jeopardy of privacy leakage, we define the following two attacks
against verification and identification:

• Identity spoofing attack: If an attacker knows the victim’s identity
and has access to audio posted by the victim, she may exploit
this audio for a replay attack [55] or a voiceprint mimicry attack
[60], which can fool the voiceprint verification of the victim’s
devices. For example, the attacker and the victim are in the same
video conference, and the attacker can record the victim’s speech
without restriction.

• Identity inference attack: If the attacker does not know the victim’s
identity but has access to many victims’ audio without their
knowledge, she can easily match the identification of victims
by ASVs and further infer their sensitive information. In this
situation, we assume the attacker has a pool of potential victims’
speech, helping her ASVs for identity inference. For example, the
attacker may be an untrusted application or a cloud server that
illegally collects the audio of a large number of users [30, 31].
Through identity matching, the attacker can targetedly steal the
victim’s privacy from big data, such as schedule, health condition,
and financial situation.

2.3 Voice Anonymization
To defend against the voice privacy leakage, researchers proposed
voice anonymization by hiding one’s identity. Some traditional
voice anonymization methods change one’s voice so that people
can not distinguish his or her identity at all, like changing the
fundamental frequency. Recent voice anonymization, like speech
conversion or speech synthesis, can entirely destroy the original
voiceprint and produce a new speech with the same content. How-
ever, with the rising of the Internet and social media, people are
unwilling to endure the cost of anonymization because they hope
their family and friends can distinguish them by their voice. In
other words, voice anonymization should hide the user’s identity
in front of intelligent speech systems instead of human beings.
Therefore, an ideal voice anonymization system should not only
remove the speaker’s information from the original speech to avoid
potential attackers stealing privacy, but also meet the requirements
of anonymity, intelligibility, naturalness, and acoustic identifiability
[15].

Under this anonymization system, ASVs can not distinguish the
original speaker. Intelligibility and naturalness confine that both
humans and ASRs can understand anonymized speech. Acoustic
identifiability seems to contradict anonymity. However, it is re-
quired that human beings can distinguish anonymized speech. This
constraint widely exists in social media. In conclusion, an ideal
speech anonymization should have the ability to deceive speaker
identification and verification systems but maintain the original
acoustic quality as well as possible.

Existing anonymization works are all implemented by software
algorithms and can be divided into three classes, i.e., signal process
[39, 53], speech conversion & synthesis [6, 27], and adversarial ex-
amples [11, 15]. These methods demonstrate divergent performance
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Figure 2: Block diagram of a microphone module. A micro-
phonemodule consists: (1) a sensor to convert acoustic signal
into digital signal; (2) a processor to preprocess and encode
the digital signal. MicPro is embedded in the audio codec.

in the above requirements. Above them, anonymization based on
adversarial examples can make a good trade-off in all these require-
ments. However, adversarial examples need a high-consumption
computation from the neural network and can only be executed at
the software level. It inevitably raises concerns about the transfer-
ability and interpretability of adversarial examples, the real-time
efficiency of the system, and the security of published software.

2.4 Microphone Module
Smart devices have raised people’s awareness because of the emer-
gence of IoT and smart sensing. Specifically, the intelligent voice
system is a popular technology because it provides a convenient
computer-human interface. The demand for voice interactionmakes
microphone modules embedded in almost all smart devices. Typi-
cally, a microphone module comprises a sensor and a processor, as
shown in Fig. 2. The sensor consists of a transducer, amplifier, and
analog-digital converter (ADC). The processor is usually a micro-
controller or a dedicated digital signal processor (DSP) to process
the audio signal. After being recorded by a microphone module, an
acoustic signal is converted to a digital signal, and can be stored
locally or sent over the network to remote servers.

Audio codec. Compression is necessary for transmitting audio
since uncompressed audio consumes a lot of bandwidth. Audio
codecs can be divided into three types: waveform coders, vocoders,
and hybrid coders [49]. The commonly used coders now are hy-
brid coders, which combine the high quality of waveform coders
and the low bit-rate of vocoders. This hybrid coding technique
is the so-called code excitation linear prediction (CELP), which
merges vector quantization (VQ) with analysis-by-synthesis (AbS)
to achieve balanced performance between efficiency and quality
[19]. That is why CELP-based codecs have been widely used, espe-
cially in voice over Internet protocol (VoIP). Our work, MicPro, is
developed on the basis of this codec.

3 THREAT MODEL
3.1 Motivation
Our goal is to anonymize audios in low-latency scenarios such as
virtual calls. In these scenarios, previous anonymization schemes
encounter two challenges: (1) most anonymization schemes that
require an entire piece of recorded audio to be input for anonymiza-
tion are impractical for the low-latency, frame-by-frame transmis-
sions. Although some SP-based schemes could be adapted for virtual
calls, we have shown that they struggle to strike an effective bal-
ance between anonymity and usability (in Sec. 6.2), and remain
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susceptible to attacks from informed adversaries (in Sec. 6.4.2). (2)
The anonymization process becomes futile if an attacker can obtain
the original audio before it is anonymized at the software level.
For example, an attacker might be able to compromise the victim’s
device and gain control of the microphone or steal local audio files
directly [22, 23]. An attacker could also be an untrusted remote
server claiming to provide an anonymization service.

Considering these issues, we envision MicPro working before
the software level, i.e., in the microphone module. MicPro can
be implemented in low-latency scenarios like virtual calls, with a
low overhead that is compatible with microphone hardware with
limited processing capabilities. Once produced by MicPro, the audio
recordings, regardless of where they are stored, either locally or
in the cloud, will protect the voiceprints of users. The additional
benefit of this microphone-based approach is that it can be flexibly
applied to various software-level applications, such as ASR.

3.2 Defense Goal
We assume that attackers can access the audio from either the
Internet or the recorded audio files. Once the audio is obtained,
the attackers can extract the voiceprint of the victim and further
launch attacks such as spoofing attack and inference attack. For
either attack, MicPro protects the voiceprint privacy from the mi-
crophone module level and outputs the privacy-preserving audio
to the subsequent applications. MicPro shall meet the following
requirements:
• Anonymity. Audio output from microphone modules should
maintain anonymity to resist privacy leakage threats.

• Usability. We should preserve the usability in terms of intelligi-
bility for listeners, low latency for transmissions, and lightweight
for implementations.

4 PRELIMINARY ANALYSIS
We aim to safeguard voiceprint privacy from the microphone mod-
ule. Before presenting the design of MicPro, it’s essential to assess
its feasibility. Here, we showcase that modifying some coefficients
of a codec within a microphone module can modify the voiceprint
of an audio.

4.1 Change Voiceprint with Microphone Module
The fundamental frequency (F0) and formants (F1, F2, F3, · · · ) of
audios carry the identity information while changes of formants
frequencies convey linguistic information [32]. The fundamental
frequency is the basic frequency of vocal cord vibrationwhen voiced
(i.e., pronouncing vowels). Formants are related to the shape of
the vocal tract, which differs among people due to one’s unique
physiological structure of the vocal organs. As a result, formants
are significant parameters to characterize one’s individuality [58].
Both F0 and formants are frequency-domain features that can be
displayed in a spectrogram. Therefore, converting a signal sequence
to the spectrogram is the first step in calculating various acoustic
features, such as Mel-scaleFrequency Cepstral Coefficients (MFCC)
which is widely used to train ASR and ASV models.

We use the Peterson-Barney database [12] to illustrate the for-
mant distribution of 10 vowels in English and mark them in Fig. 3(a).
The F1 and F2 formants, which are the first and second peak values
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Figure 3: (a) shows the frequency of F1 and F2 formants for
vowels (in color) and speakers (in dot). Formants of the same
vowel fromdifferent speakers tend to clusterwithin a specific
region. (b) shows the effect of adjusting the codec parameters
on formant values. This comparison highlights the potential
formodifying the voiceprint at themicrophonemodule level.

of the spectrum, are marked for each vowel. The formant frequen-
cies marked with the same color fall within a particular range. The
position of the F1 and F2 formants determines the perception of a
certain vowel. That’s why we can tell that speakers are saying the
same word even if they have different timbres.

Apart from semantic information, the speaker’s individuality is
also reflected in the divergence of formant distribution. Therefore,
modifying the formants can alter the voiceprint. To investigate this,
we randomly modified the linear prediction coding (LPC) coeffi-
cients in a CELP codec, which will be explained later, to check for
changes in the formants of voiced frames. As shown in Fig. 3(b),
the modification of LPC coefficients did change the positions of the
formants. However, this randommodification resulted in uncontrol-
lable changes in formant positions, leading to speech recognition or
verification errors (marked with crosses). In some cases, the shifted
formants caused vowel perception errors, leading to a loss of intel-
ligibility. Nevertheless, this preliminary validation demonstrates
the feasibility of modifying formants by tuning the microphone
module parameters. In the following sections, we will elaborate on
how to achieve controllable privacy protection by adjusting these
parameters.

Remark: It is feasible to modify the voiceprint of an audio from
the microphone module level by changing the LPC coefficients.

4.2 Change Voiceprint by Formant Modification
In this subsection, we will explain how to modify the voiceprint
by manipulating formant features. We first provide the basis of
LPC analysis, and then describe the methods for changing formants
using line spectrum frequencies (LSFs) based on LPC.

LPC analysis. LPC has emerged as a powerful technique for
speech signal processing, including speech feature extraction and
speech synthesis [1]. The fundamental principle of LPC is based
on the approximation of an autocorrelation sequence at any time
instant, which can be represented as a linear combination of its
past 𝑝 sample values and a residual 𝑒 (𝑛), as shown in the following
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(c) McAdam Transformation frame
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Figure 4: The waveform and spectrum of a voiced speech a. FFT: Fast Fourier Transform. LPC FR: LPC filter frequency response,
also the envelope of FFT. Odd LSFs: Odd order of LSFs 𝜔𝑖 . Even LSFs: Even order of LSFs 𝜃𝑖 . LPC FR shows the envelope of the
FFT spectrum, and formants are shown as the peak values sandwiched by a pair of narrow lines.

equation:

𝑥 (𝑛) = −
𝑝∑︁

𝑘=1
𝑎𝑘𝑥 (𝑛 − 𝑘) + 𝑒 (𝑛) (1)

where 𝑎𝑘 is called LPC coefficient, and 𝑝 is the LPC order. By ap-
plying Z-transform to Eq. 1, we have:

𝑋 (𝑧) = 𝐸 (𝑧)/𝐴(𝑧) (2)

where 1/𝐴(𝑧) = 1/(∑𝑝

𝑘=0 𝑎𝑘𝑧
−𝑘 ) is the LPC filter. LPC is adaptable

for short-time speech analysis because the speech signal has com-
ponents of different frequencies and is considered stationary over
a short period of time (10ms to 30ms). The spectrum of 1/𝐴(𝑒 j𝜔 )
represents the envelope of the short-time Fourier transform (STFT)
of 𝑥 (𝑛). The peak values of the envelope indicates the formant po-
sitions. LPC analysis decomposes the speech signal into a residual
signal 𝐸 (𝑧) (for glottal excitation when voiced) and a channel filter
1/𝐴(𝑧) (for the vocal tract response). LPC analysis can effectively
encode the time-domain and frequency-domain features of the orig-
inal speech signal with a few coefficients [20]. In addition, LPC
can also provide an accurate speaker vocal tract model, which is
significant for speaker recognition and speech synthesis.

Line spectrum frequencies. A disadvantage of the LPC co-
efficients is that small changes in the coefficients may make the
LPC filter unstable [43], i.e., the filter appears to have poles outside
the unit circle of the complex plane. Therefore, it is undesirable to
quantize LPC coefficients directly in speech coding but to replace
them with equivalent coefficients, called line spectrum pairs (LSPs)
or line spectrum frequencies (LSFs). LSPs are derived from the de-
nominator polynomial 𝐴(𝑧) of the LPC filter. They are calculated
as follows [35].

Let 𝑃 (𝑧) = 𝐴(𝑧)−𝑧−(𝑝+1)𝐴(𝑧−1) and𝑄 (𝑧) = 𝐴(𝑧)+𝑧−(𝑝+1)𝐴(𝑧−1).
The zeros of these two polynomials are all on the unit circle [48],
thus they can be written by:

𝑃 (𝑧) = (1 + 𝑧−1)
𝑝/2∏
𝑖=1

(1 − 2 cos𝜔𝑖𝑧
−1)

𝑄 (𝑧) = (1 − 𝑧−1)
𝑝/2∏
𝑖=1

(1 − 2 cos𝜃𝑖𝑧−1)

(3)

where 𝑝 is the LPC order, 𝜔𝑖 , 𝜃𝑖 are the so-called LSFs, and cos𝜔𝑖 ,
cos𝜃𝑖 are LSPs. The zeros of 𝑃 (𝑧) and𝑄 (𝑧) are interlaced with each

other, that is:

0 < 𝜔1 < 𝜃1 < · · · < 𝜔𝑝/2 < 𝜃𝑝/2 < 𝜋 (4)

LSFs are considered to reflect the characteristics of the LPC spec-
trum. Precisely, a pair of 𝜔𝑖 and 𝜃𝑖 determine the position and
amplitude of a formant. The closer they are, the higher the ampli-
tude of the formants here. In addition, LSFs facilitate interpolation
in speech encoding. As long as the sequence order of LSFs is not
changed, the synthesized LPC filter can be guaranteed to be sta-
ble [35], which can be easily obtained by 𝐴(𝑧) = 1/2[𝑃 (𝑧) +𝑄 (𝑧)].
In the following, we utilize this property to achieve controllable
transformation of the formants.

Remark: LSFs can be used to model formants as a stable and
alternative representation for LPC coefficients. We can modify LSFs
to reshape the formant features for voiceprint modification.

4.3 Modification of Formants in Previous Works
In this subsection, we perform LPC analysis for previous anonymiza-
tionworks to further corroborate the formant changes in anonymized
speech. We investigate two SP-based works, McAdam Transforma-
tion (MT) [39] and VoiceMask (VM) [42], as well as an ML-based
work, V-Cloak [15]. To analyze the modification in signal features
of these anonymization methods, we take the vowel frames a from
librispeech-test-clean [38] as an example of a voiced speech, and
visualize their time-domain waveforms and frequency-domain re-
sponses, as shown in Fig. 4. Figure 4(a) shows the original waveform,
FFT, LPC filter frequency response, and LSFs. The LPC order is set
to 𝑝 = 10. The F1 and F2 formants are located in the frequency
band of [0, 4000]Hz, with frequencies of about 500 and 2000 Hz.

VoiceMask (VM). The VM modifies the frequency components
of the original audio signal by a bilinear function:

𝑓 (𝜔, 𝛼) = | − j ln
𝑒 j𝜔 − 𝛼

1 − 𝛼𝑒 j𝜔
| (5)

where 𝜔 ∈ [0, 𝜋] is the digital frequency (calculated by FFT), and
𝛼 ∈ (−1, 1) is the warping factor that indicates the strength of
frequency warping. Fig. 4(b) shows a VM frame of the vowel. The
conversion destroys the harmonic property of the frequency com-
ponents. Therefore it loses its naturalness compared to a human
voice. We can also see a slight shift in the formants. That’s because
the formants follow the frequency to distort to a new position.
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McAdam Transformation (MT). The MT modifies the pole
angle of the LPC filter, where the poles are the conjugate complex
roots of 𝐴(𝑧):

𝐴(𝑧) =
𝑝/2∏
𝑖=1

(1 − 𝑟𝑖𝑒
j𝜃𝑖𝑧−1) (1 − 𝑟𝑖𝑒

−j𝜃𝑖𝑧−1) (6)

where 𝑟𝑖 is the pole radius, 𝜃𝑖 is the pole angle, and j is the imaginary
unit. MT uses a coefficient 𝛼 ∈ [0.5, 1] to modify the pole angle
by 𝜃 ′

𝑖
= 𝜃𝛼

𝑖
, when 𝛼 = 1 means no modification and 𝛼 < 1 causes

a shift in the resonant frequency of LPC filters. The default value
of 𝛼 is typically set to 0.8. Fig. 4(c) shows an MT frame of the
vowel. This transformation tends to centralize the formants and
concentrate the energy towards the intermediate frequency. It can
also be reflected in the time domain waveform, where the amplitude
of high-frequency oscillation increases significantly. Note that MT
only changes the energy distribution of frequency components,
while the fundamental frequency and its harmonics shown in the
FFT spectrum remain unchanged.

V-Cloak. V-Cloak is an anonymization method based on adver-
sarial learning. It adds delicate and imperceptible perturbations to
the original signal, which can be regarded as an adversarial example.
This method makes fine-grained modifications to the time-domain
waveform and can be observed from Fig. 4(d). Features in the fre-
quency domain have no noticeable changes, while perturbations
are reflected by an increase in high-frequency energy.

To summarize, SP-based anonymization methods essentially
modify the frequency features of the signal. MT changes the spec-
trum envelope while VM changes the frequency components. Both
methods inevitably lead to a certain degradation in usability. The
two SP-based methods utilize constrained coefficients for the trans-
formation, which limits their ability to make fine-grained modi-
fications to the original signal. Moreover, a radical change in the
signal can result in intelligibility degradation. Therefore, we aim
to address two critical issues in the design of MicPro. Firstly, we
investigate whether there exist SP-based modifications, such as for-
mant transformation, that can preserve the usability of the audio as
much as possible. Secondly, we aim to determine the extent to which
such modifications can be made without negatively impacting the
usability.

5 DESIGN
In order to achieve voiceprint privacy protection, MicPro leverages
the built-in functions of the microphone module to modify formant
features. MicPro first transforms the LSFs of the original audio
signal to achieve anonymity. The transformation functions are then
applied to the CELP encoder to fulfill the audio transformation with
only minor modifications.

5.1 Overview of MicPro
We present the overview of MicPro in Fig. 5. First, we define the
formant transformations to modify the formant features of the orig-
inal audio frames, as described in Sec. 5.2. These transformations
are parameterized using three coefficients that govern the form
of the transformation. Due to the difficulty of obtaining optimal
coefficients, we formulate a multi-objective optimization problem
in terms of different defense tasks, as outlined in Sec. 5.3. We use
the ASV score to indicate anonymity, and perceptual score and
ASR score to indicate usability. To solve this problem, we adopt a
multi-objective optimization algorithm based on Genetic Algorithm
(GA), which enables us to obtain the Pareto front, as described in
Sec. 5.4.

Figure 5 also depicts the process of protecting voiceprint privacy
using a modified CELP codec with a microphone module. The codec
applies formant transformations to the original audio frames with
pre-trained coefficients. In applications such as virtual calls, the
microphone module encodes the original audio signal into a bit
stream for transmission over the Internet. In other applications such
as voice assistants, the microphone performs the entire encoding
and decoding process to anonymize voice commands.

5.2 Formant Transformations
In Sec. 4, our findings demonstrate a strong correlation between
the distribution of formants and speech content, as exemplified
by the vowel sounds shown in Fig. 3(a). Furthermore, our analysis
reveals that, for a given vowel sound, significant variability in the
F1 and F2 formants exists among different speakers, implying that
formant characteristics can be used to distinguish between speech
content and speaker identity. Given this insight, it follows that
the manipulation of formant distribution can serve as a means of
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Figure 6: Images of the three formant transformation func-
tions and the respective spectrum changes. The right-side
sub-figures demonstrate examples of the audio spectrum af-
ter the transformation.

altering speaker characteristics while minimizing the distortion of
textual information.

5.2.1 Define the transformation functions. In Sec. 4.2, we discuss
the ability to reshape formants through the manipulation of LSFs.
We hereby define transformation functions for LSFs, which can be
used to produce a desired pattern of formant changes. Previous
works have explored the use of LSF transformations for speech
enhancement [35] and voice conversion [58]. The former utilizes
LSF operations to modify formant bandwidths and positions, while
the latter applies a piecewise linear function to transform the LSFs
of a source speaker to those of a target speaker. In line with this,
we design the following transformations, specifically, 𝐹1 and 𝐹2 to
relocate the positions, and 𝐹3 to adjust the bandwidths.

𝐹1: Formant offset function. Firstly we consider the overall
offset of the formants. As formants are spectrum peaks, an offset of
formants shifts spectral energy toward higher or lower frequencies.
This function is formulated as follows:

𝜔𝑖 = 𝐹1 (𝜔𝑖 , 𝜉1) = 𝜔𝑖 + 𝜔𝑖 (𝜉1 − 1) (1 − 𝜔𝑖 ) 𝑖 = 1, · · · , 𝑝 (7)

where 𝜔𝑖 ∈ [0, 1] is the 𝑖th normalized LSF, 𝑝 is the order of LPC
analysis. We refer 𝜉1 as offset coefficient. The image of 𝐹1 and a
schematic diagram of spectrum change are shown in Fig. 6(a) and
Fig. 6(b). An offset coefficient of 𝜉1 > 1 shifts the formants to-
wards higher frequencies, while 𝜉1 < 1 shifts them towards lower
frequencies.

𝐹2: Formant separation function. The second is the separa-
tion function which modifies the degree of dispersion between the
formants. It can be expressed as follows:

𝜔𝑖 = 𝐹2 (𝜔𝑖 , 𝜉2) = 𝜔𝑖 + (𝜉2 − 1) sin(2𝜋𝜔𝑖 )/𝑝 𝑖 = 1, · · · , 𝑝 (8)

We refer 𝜉2 as separation coefficient. The image of 𝐹2 and a schematic
diagram of spectrum change are shown in Fig. 6(c) and Fig. 6(d).
𝜉2 > 1 means to gather the formants, while 𝜉2 < 1 means to spread
the formants.

𝐹3: Bandwidth adjustment function. Finally, we consider
modifying the bandwidth of the formants. This can be achieved by
adjusting the separation of adjacent lines. We additionally define
𝜔0 = 0 and 𝜔𝑝+1 = 1. The distance of the two adjacent lines is:

𝛿 (𝜔𝑖 ) = 𝜔𝑖+1 − 𝜔𝑖 𝑖 = 0, · · · , 𝑝 (9)

Adjust the distance by:

𝛿 (𝜔𝑖 ) = 𝛿 (𝜔𝑖 ) + (𝜉3 − 1) [𝛿 (𝜔𝑖 ) − 𝛿 (𝜔𝑖 )] (10)

where 𝛿 (𝜔𝑖 ) =
∑𝑝

𝑖=0 𝛿 (𝜔𝑖 )/(𝑝 + 1) = 1/(𝑝 + 1) is the average
lines distance. We refer 𝜉3 as expansion coefficient. 𝜉3 > 1 means
expanding the formants bandwidth while 𝜉3 < 1 means shrinking
the formants bandwidth. The modified LSFs are given by:

𝜔𝑖 =

𝑖−1∑︁
𝑘=0

𝛿 (𝜔𝑘 ) 𝑖 = 1, · · · , 𝑝 (11)

Then 𝐹3 can be written by:

𝜔𝑖 = 𝐹3 (𝜔𝑖 , 𝜉3) =
𝑖−1∑︁
𝑘=0

{
𝜔𝑘+1−𝜔𝑘+(𝜉3−1) [ 1

𝑝 + 1
−𝜔𝑘+1+𝜔𝑘 ]

}
(12)

The image of 𝐹3 and a schematic diagram of spectrum change are
shown in Fig. 6(e) and Fig. 6(f). It can be observed that expanding
the formant bandwidth is equivalent to flattening the spectrum.

These three transformation functions are cascaded to combine a
complex transformation, which is given by:

F (𝜔𝑖 , 𝜉) = 𝐹3
(
𝐹2

(
𝐹1 (𝑥, 𝜉1), 𝜉2

)
, 𝜉3

)
(13)

5.2.2 Stability and invertibility analysis. To ensure the stability of
the LPC filter after transforming, we cannot change the ordering
of the LSFs. In other words, we should guarantee that 𝜔1 < 𝜔2 <

· · · < 𝜔𝑝 . A sufficient condition for it is to make the functions
monotonically increasing. To do so, we constrain the coefficients
𝜉1, 𝜉2, 𝜉3 ∈ [0, 2]. As a result, ∀𝜔𝑖 ∈ [0, 1] we have:

𝜕𝐹1 (𝜔𝑖 , 𝜉1)
𝜕𝜔𝑖

= 2(1 − 𝜉1)𝜔𝑖 + 𝜉1 ≥ 0 (14)

𝜕𝐹2 (𝜔𝑖 , 𝜉1)
𝜕𝜔𝑖

= 1 + 2𝜋 (𝜉2 − 1)
𝑝

cos(2𝜋𝜔𝑖 ) ≥ 1 − 2𝜋
𝑝

> 0 (15)

𝜕𝐹3 (𝜔𝑖 , 𝜉1)
𝜕𝜔𝑖

= 2 − 𝜉3 ≥ 0 (16)

Thus, the transformation functions are monotonically increasing,
and our transformations will not induce instability of the filter.
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code excitation linear prediction (CELP) codec. CELP encoder
first performs Analysis-by-Synthesis (AbS) for each audio
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coefficients, and LPC coefficients are obtained by AbS. LPC
coefficients are converted to LSFs for quantization. The LSF
transformation functions are only applied to the LPC syn-
thesis filter to achieve the transformation.

We point out that these functions are invertible, an essential
property to the security of our anonymization method, which is
depicted in Sec. 6.4. Since monotonicity has been proved, and the
definition and value domains are known as 𝜔𝑖 ∈ [0, 2], 𝜔𝑖 ∈ [0, 2],
we can say they are bijection, i.e., invertible. Let 𝐹−1 : 𝜔𝑖 → 𝜔𝑖

denotes the inverse functions of transformation functions.
For 𝐹1 we have its inverse function as:

𝜔𝑖 =
𝜉1 −

√︃
𝜉2

1 − 4(𝜉1 − 1)𝜔𝑖

2(𝜉1 − 1) (17)

For 𝐹2, its inverse function 𝜔𝑖 = 𝐹−1
2 (𝜔𝑖 , 𝜉2) has no explicit

functional expression, as it is a transcendental equation. Instead,
we can obtain the inverse function value by a look-up table.

For 𝐹3, we first calculate 𝛿 (𝜔𝑖 ) using Eq. 10:

𝛿 (𝜔𝑖 ) =
𝛿 (𝜔𝑖 ) − (𝜉3 − 1)𝛿 (𝜔)

2 − 𝜉3
(18)

Then the inverse function is given by:

𝜔𝑖 =

𝑖−1∑︁
𝑘=0

𝛿 (𝜔𝑖 ) =
𝑖−1∑︁
𝑘=0

𝜔̃𝑖+1 − 𝜔𝑖 − (𝜉3 − 1)/(𝑝 + 1)
2 − 𝜉3

(19)

5.2.3 Modify the CELP codec for formant transformations. The
premise of being able to apply the formant transformations is that
we have already obtained the LSFs. However, extracting LSFs is
complex, involving several steps such as speech framing, window-
ing, and LPC analysis. Additionally, the accuracy of LSFs can be
affected by the choice of analysis parameters used in these steps.
To simplify the process, we utilize the CELP codec to decrease the
computational overhead of these steps.

CELP is a speech compression technique that combines LPC
analysis and waveform coding, as shown in Fig. 7. In a generic

CELP codec, LPC analysis and long-term analysis are performed
to model the formants and pitch, respectively. Then the analysis-
by-synthesis (AbS) process is executed to determine an optimal
excitation from a fixed codebook [43]. LSFs are used in the CELP
codec as an equivalent mathematical representation of LPC coeffi-
cients because: (1) checking the stability and fine-tuning LSFs can
easily eliminate the instability of the LPC filter caused by quantiza-
tion errors [24]. (2) They may be quantized for fewer bits compared
with other coefficients while maintaining the speech quality [35].

We leverage these inherent properties of LSFs in the CELP codec
to reduce the overhead of signal preprocessing in MicPro and im-
prove the quality of the synthesized speech. In the CELP encoder,
the codebook index, excitation gain, LTP filter coefficients, and LPC
filter coefficients are quantized to bitstream for transmission. In the
CELP decoder, the bitstream file is unpacked to the above coeffi-
cients used for frame reconstruction. Our modification is applied
before the LSF quantization step and is highlighted in red in Fig. 7.
The modified LSFs are also restored to new LPC coefficients, which
are used for AbS later.

5.3 Objective Function Formulation
5.3.1 Formulate the privacy-preserving problem. Here we show
how to determine the coefficients 𝜉 to achieve anonymization by
formulating the problem as an optimization problem. Specifically,
given an original audio signal 𝑥 = [𝑥1, · · · , 𝑥𝑁 ] ∈ R1×𝑁 , we aim
to find a transformed audio signal 𝑥 which destroys the original
voiceprint within 𝑥 . Typically, a voiceprint can be extracted by ASVs
that output a speaker’s identity represented by an embedding vector
𝑣 (𝑥) ∈ R1×𝑉 . We define the objective function to be optimized as
follows:

min
𝜉

𝑆ASV [𝑣 (𝑥), 𝑣 (𝑥)]

s.t. 𝑥, 𝑥 ∈ [−1, 1] and 𝜉 ∈ [0, 2]
(20)

where 𝑆𝐴𝑆𝑉 [·, ·] denotes the similarity between two voiceprint
vectors calculated by an ASV system, and 𝑥 is the transformed
audio whose LSFs are 𝜔𝑖 = F (𝜔𝑖 , 𝜉). We assume that both the
original signal 𝑥 and transformed signal 𝑥 are limited to [−1, 1] in
accordance with the standard of PCM format.

5.3.2 Augment the objective function. After formulating our task
as an optimization problem, we need to refine the objective func-
tion to consider audio usability. Specifically, the output audio sig-
nal should maintain its intelligibility and naturalness. In addition,
to balance the trade-off between anonymity and usability, tradi-
tional approaches tend to use the weighted sum of the usability and
anonymity scores. However, it is not easy to choose appropriate
weights since anonymity and usability are different metrics.

To address these issues, we augment the objective function by
introducing intelligibility and naturalness assessment. Based on
our defense tasks defined in Sec. 6.2, we use perception score in
T1 (for human listeners in virtual calls) and ASR score in T2 (for
ASRs). Moreover, instead of using a weighted sum, we formulate
multiple objective functions to avoid the need for weight selection
as follows:
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T1 : min
𝜉

𝑆ASV [𝑣 (𝑥), 𝑣 (𝑥)], 𝑆pept (𝑥, 𝑥)

T2 : min
𝜉

𝑆ASV [𝑣 (𝑥), 𝑣 (𝑥)], 𝑆ASR (𝑥, 𝑥)

s.t. 𝑥, 𝑥 ∈ [−1, 1] and 𝜉 ∈ [0, 2]

(21)

where 𝑆pept (·, ·) = 1−STOI is the perception quality score indicating
the audibility for human beings and 𝑆ASR (·, ·) is the ASR score
measured in terms of word error rate (WER). STOI is short-time
objective intelligibility [50].

5.4 Multi-objective Optimization
We consider utilizing an optimization algorithm to solve the prob-
lem mentioned above. Considering that the vector quantization in
the CELP codec is unsuitable for gradient back-propagation, we
regard the problem as a black-box multi-objective optimization
problem. We tried several commonly-used algorithms and com-
pared their performance, which can be found at our homepage1,
and finally determined to employ the Non-dominated Sorting Ge-
netic Algorithm (NSGA-II) [13], a multi-objective genetic algorithm
based on Pareto optimality. The flow chart of NSGA-II is shown in
Fig. 8 and we highlight the main steps in the following:
• Individual definition.We regard the coefficients as the genes
of each individual:

𝑔 (𝑘) = (𝜉 (𝑘)1 , 𝜉
(𝑘)
2 , 𝜉

(𝑘)
3 ) 𝑘 = 1, · · · , 𝑃 (22)

where 𝑔 (𝑘) denotes the genes of 𝑘th individual and 𝑃 is the pop-
ulation size. We set 𝑃 = 100 in our problem.

• Population initialization.We randomly initialize the popula-
tion in the coefficients definition space [0, 2]1×3.

• Objective value calculation. To obtain accurate scores for the
objective function, we need to calculate 𝑆ASV, 𝑆pept and 𝑆ASR
for each individual using multiple speech samples. However,
iterating through the entire training set for each individual can
be time-consuming. To alleviate this burden, we randomly select
a subset of samples from the training set for each individual.
Therefore, we calculate the mean over the selected subset as the
expected scores:

E[𝑆 (𝑘) ] = 1
𝑁

𝑁∑︁
𝑖=1

𝑆 (𝑘) (𝑥𝑖 , 𝑥𝑖 ) 𝑥𝑖 ∈ D𝑠𝑢𝑏 ⊂ D (23)

whereD is the training set andD𝑠𝑢𝑏 is the subset ofD. Without
loss of generality, we randomly select 20 pieces of audio forD𝑠𝑢𝑏

for each individual in each epoch.
• Non-dominated sorting. In this step, NSGA-II algorithm per-
forms fast non-dominated sorting, calculates crowding degree,
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Figure 9: Optimization results of NSGA-II. The green and
blue dashed lines are the ideal minimums of objective values.
The yellow dashed line is the threshold of the ASV score
that we adopt. The red curve shows the Pareto Front, i.e., the
non-dominated solutions.

and applies elite strategy for each individual to generate new
parents.

• Parents selection, crossover and mutation. This step is the
same as basic genetic algorithms. New offspring and parents are
combined as the new population for the next epoch.
We use an established optimization toolkit [9] to implement

the above algorithm. We visualize the optimization result in Fig. 9.
The red curves are the final results of NSGA-II, i.e., Pareto Fronts,
where each red triangle marks the objective values of a set of non-
dominated solutions. The grey dots correspond to the procedural
results. The green and blue dashed lines indicate the ideal minimum
values of objective values. The yellow dashed line is the threshold
of the ASVs (0.25 for ECAPA-TDNN). An ASV score below this
threshold indicates successful anonymization. To preserve usability,
we set the perceptual score threshold to 0.25 and the ASR score
threshold to 0.1. The feasible solutions are those that fall below
both the ASV and perceptual (or ASR) score thresholds. Finally, we
use the coefficients corresponding to a feasible solution to evaluate
the performance of MicPro.

5.5 Implementation
5.5.1 Software Implementation. To implement MicPro, we devel-
oped a prototype of the CELP codec in the G.729 codec [7]. G.729 is
based on CS-ACELP (Conjugate-Structure Algebraic-Code-Excited
Linear Prediction) and possesses all properties of a generic CELP
codec. We obtain G.729 source code from the official website of
ITU-T [25]. To apply LSF transformation, we investigate the code
structure and add a new source code lsf_trans.cwhere we define
the transformation functions Lsf_trans(). We insert Lsf_trans()
between Lsp_Lsf2() and Lsp_qua_cs(). Lsp_Lsf2() is the func-
tion to convert LSPs to LSFs, and Lsp_qua_cs() is the function to
quantize LSFs. Both of them are defined in qua_lsp.c.

5.5.2 Hardware Implementation. The CELP codec itself is designed
for real-time voice communication, and it processes voice signals
frame by frame. CELP codec based on C language can be well-
compatible with embedded devices, such as DSPs and microcon-
trollers. We present an example of deploying on a Respeaker Core
V2. The microphone module hardware setup can be referred to
Fig. 10. More details can be found at our homepage1.
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Dataset Subset #Speaker #Utterance Duration (s)

VoxCeleb1 (E) dev 1,211 148,642 3.9 ∼ 144.9
LibriSpeech (E) train-clean-360 921 104,014 1.1 ∼ 29.7
VoxCeleb1 (E) test 40 4,874 3.9 ∼ 69.1
LibriSpeech (E) test-clean 40 2,260 1.3 ∼ 35
VCTK (E) wav48 40∗ 2,000† 2.1 ∼ 15.1
AISHELL (C) test 20 1,000† 1.9 ∼ 14.7

Table 1: Datasets for training and evaluation. ∗: we use the
first 40 speakers in VCTK. †: we randomly select 50 utterances
from each speaker. E: English; C: Chinese.

ASV Model Catagory EER ASR Model Language WER

ECAPA-TDNN DNN-based 0.7% transformer E&C 2.27%
X-Vector DNN-based 2.5% wav2vec2 E 1.90%
I-Vector Statistic 2.8% crdnn-rnn E 3.90%

Table 2: ASVs andASRs for evaluation. E: English; C: Chinese.

6 EVALUATION
In this section, we conducted a series of experiments to evaluate the
performance of MicPro in two fields, i.e., usability and anonymity.
Our evaluation compared the performance of MicPro and other
baselines according to two different tasks defined in Sec. 6.2. Our
proposed method can provide various solutions according to the
Pareto front shown in Fig. 9 to fit different tasks better. We choose
two existing voice anonymization systems, Mcadam [39] and Voice-
mask [42], and make a comprehensive comparison with our system
in four datasets. In addition, we explore some implicit impacts
on performance to verify the robustness of MicPro. A physical
domain experiment is also conducted to ensure the feasibility of
implementing microphone hardware.

6.1 Experienment Setup
6.1.1 Datasets. We evaluated the performance and transferability
of MicPro using four different datasets. Our training dataset is Vox-
Celeb1 [36] and LibriSpeech [38] (subset dev and train-clean-360),
two English speaker identification datasets. In addition, we use four
other widely-used datasets: VoxCeleb1 (subset test), LibriSpeech
(subset test-clean), VCTK (subset wav48) [57], and AISHELL (sub-
set test) [10] for evaluation. We have provided the details of the
datasets used in Tab. 1 We also use our hardware implementation
to record direct and indirect human speech (i.e., via a loudspeaker)
with 22 participants and 336 utterances each.

6.1.2 Baselines. In comparing MicProwith the baselines, we exam-
ine two commonly-used anonymization methods based on signal
processing, i.e., McAdam [39] and VoiceMask [42]. To process the
test set audios, we apply a fixed McAdam coefficient of 0.8 and a
fixed VoiceMask warping factor of 0.1, following the implementa-
tions provided in the respective Github repositories [54, 59].

6.1.3 ASVs and ASRs. To evaluate the performance of MicPro, we
use three widely-used ASV systems and three ASR systems, which
are listed in Tab. 2. In addition to DNN-based ASVs like ECAPA-
TDNN [16], we also select traditional statistical-model-based ASVs
like I-Vector [14]. As for ASRs, we use three different ones for Eng-
lish datasets and one for Chinese datasets. We obtain the pretrained

15cm

Microphone

Loudspeaker

Laptop

Figure 10: Pysical setup. We use a bluetooth loudspeaker to
represent a real speaker. We deploy MicPro on the micro-
phone module to anonymize the recorded audio locally in
real time.

ECAPA-TDNN model and all ASR models from SpeechBrain [44],
while X-Vector and I-Vector models are provided by Kaldi [40].

6.1.4 Evaluation Metrics. In our evaluation, we employ widely-
accepted metrics in the field of anonymization to assess the ef-
fectiveness of MicPro. For anonymity, we primarily focus on Mis-
Match Rate (MMR) and Equal Error Rate (EER). MMR is more ap-
propriate to the goal of anonymization against speaker verification,
while EER provides a comprehensive measure of the anonymiza-
tion performance against speaker identification. For usability, we
adopt Short-Time Objective Intelligibility (STOI), Latency, as well
as subjective quality as metrics. These metrics are mainly used to
indicate the usability of virtual applications. To illustrate a wider
usage range of MicPro, we also choose Word Error Rate (WER) to
indicate the usability in ASRs.

• Miss-Match Rate (MMR). MMR indicates the probability that
anonymized audio cannot be matched with the correct speaker
by an ASV system.

• Equal Error Rate (EER). EER indicates the rate of an ASV
system at which False Accept Rate (FAR) equals False Rejection
Rate (FRR).

• Latency. Latency indicates the real-time nature of a speech codec
and has a great impact on call quality. It is measured in millisec-
onds (ms).

• Short-Time Objective Intelligibility (STOI). STOI [50] indi-
cates speech intelligibility. Its range is quantified from 0 to 1 to
represent the percentage of words that are correctly understood.

• Subjective quality. We conducted a subjective evaluation of
the quality of anonymized audios through a user study. Specif-
ically, we mixed different anonymized audios and recruited 32
participants to rate them on a scale from 0 (worst) to 5 (best).
We asked participants to pay attention to four indicators: (1) the
intelligibility of the audio, (2) the naturalness of the audio, (3)
the similarity of the audio to the original, and (4) whether they
would accept such a voice change if they had anonymity needs.

• Word Error Rate (WER). WER is used to quantify the dissimi-
larity between the ASR results obtained from the original audio
and the anonymized audio, which is given by:

𝑊𝐸𝑅 =
𝑁𝑠𝑢𝑏 + 𝑁𝑑𝑒𝑙 + 𝑁𝑖𝑛𝑠

𝑁𝑠𝑢𝑚
, (24)
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Figure 11: The anonymity performance of anonymization systems. (a) & (b): MMR and EER of MicPro and baselines in three
ASV models. (c): ROC curves of MicPro and baselines in ECAPA-TDNN.

𝑡𝑑𝑢𝑟 (s) 𝑡𝑒𝑛𝑐 (ms) 𝑡𝑒𝑛𝑐 (ms) 𝑙 (ms) 𝑙 (ms) Δ𝑙 (ms) 𝛿𝑙 (%)
5 683 ± 18 685 ± 10 16.366 16.370 0.004 0.02
30 3, 864 ± 22 3, 868 ± 24 16.288 16.289 0.001 0.01
60 7, 667 ± 24 7, 663 ± 14 16.278 16.277 −0.001 −0.01
120 15, 289 ± 45 15, 293 ± 32 16.274 16.274 0.000 0.00
Avg. - - 16.302 16.303 0.001 0.01

Table 3: Latency increase of MicPro. 𝑡𝑑𝑢𝑟 : duration. 𝑡𝑒𝑛𝑐 : en-
coding time of original codec. 𝑡𝑒𝑛𝑐 : encoding time of modi-
fied codec. 𝑙 : latency of original codec. 𝑙 : latency of modified
codec. Δ𝑙 : latency difference. 𝛿𝑙 : relative latency difference.
The results show that the modified codec does not introduce
significant additional latency.

where 𝑁𝑠𝑢𝑏 , 𝑁𝑑𝑒𝑙 , and 𝑁𝑖𝑛𝑠 are the number of substituted words,
deleted words, and inserted words, respectively. 𝑁𝑠𝑢𝑚 is the real
word number of the ground-truth audio.

6.1.5 Physical Setup. To validate the feasibility of hardware deploy-
ment, we implement MicPro on Respeaker Core V2, a microphone
development platform with six microphone arrays and an RK3229
microprocessor running a Linux operating system [46]. The physi-
cal setup is shown in Fig. 10. The laptop powers the microphone
and controls its recording. A Bluetooth loudspeaker is placed 15cm
away from the microphone to represent a human speaker. We em-
bed the modified G.729 codec into the microphone module so that
it can record and anonymize audio locally in real time.

6.2 Overall performance
In this part, we evaluate our systems in two different tasks. Task
1 (T1): In virtual applications such as calls and meetings, MicPro
should conceal the voiceprint of users but keep the naturalness
and intelligibility of the speech. Task 2 (T2): MicPro should pro-
tect users from voiceprints leakage when interacting with ASR
systems. In both tasks, MMR and EER are the goals of anonymity
optimization. As for Usability, we use STOI and Subjective quality
to optimize Task 1 and use WER to optimize Task 2. Note that the
goal of MicPro is mainly on Task 1.

6.2.1 Anonymity. Fig. 11(a) and 11(b) show the result of the com-
parison between MicPro and baselines. MicPro (T1) and (T2) are
two sets of parameters with different optimization goals in usability.

We can find that MicPro (T1) can reach a high MMR and EER in all
three ASVs. However, the traditional SP base anonymization sys-
tems, i.e., Mcadam and Voicemask, can not achieve acceptable per-
formance in the state-of-the-art DNN-based ASVs, ECAPA-TDNN.
At the same time, MicPro can still keep an MMR of 63% and an
EER of 15%. Even in traditional statistical model base ASVs, the
MMRs and EERs of MicPro are higher than Mcadam’s and com-
parable with Voicemask’s. Moreover, MicPro (T2) can also reach a
high MMR of about 65% and EER of 20%, which is similar to (T1).
We also present the ROC curves of ECAPA-TDNN in Fig. 11(c). In
conclusion, MicPro can achieve a high enough EER compared with
baselines in the digital domain.

6.2.2 Usability. STOI. For the use of virtual calls, our focus is
on human perception. STOI is a widely-used objective metric for
quantifying speech intelligibility. To obtain a more comprehensive
assessment of STOI performance, we evaluate the STOI scores of
MicPro and baselines across four datasets, as shown in Fig. 12(a).
The results indicate that MicPro outperforms both McAdam and
VoiceMask in VoxCeleb1 and AISHELL datasets while performing
slightly worse than McAdam in LibriSpeech and VCTK datasets. We
have also included standard error bars for the STOI scores, which
show that both MicPro and McAdam have standard errors of less
than 0.5 across all four datasets.

Latency. Latency is a critical factor that affects the user experi-
ence of virtual applications such as calls or meetings. Our research
indicates that changing the G.729 codec has no significant impact
on latency. The total latency comprises the algorithm delay, pro-
cessing delay, and transmission delay [24]. The algorithm delay is
a fixed value of 15ms, while the processing delay varies depending
on the hardware used, and the transmission delay depends on net-
work conditions. Regardless of the uncertain transmission delay, we
measure the time required to encode audio using both the original
G.729 codec and our modified version on the Respeaker. Four audio
files with different durations are encoded 10 times repeatedly, and
the mean values are presented in Tab. 3. The calculated latency 𝑙 is
expressed in milliseconds (ms) and can be determined as follows:

𝑙 =
𝑡𝑒𝑛𝑐 · 𝑡𝑓
𝑡𝑑𝑢𝑟

+ 15ms (25)

Where 15ms is the fixed algorithm delay, 𝑡𝑒𝑛𝑐 is the encoding time,
𝑡𝑑𝑢𝑟 is the duration of the audio, and 𝑡𝑓 is the frame length (10ms
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Figure 12: The usability performance of anonymization systems. (a): STOI score of three methods across four datasets. MicPro
gets the highest STOI score in VoxCeleb1 andAISHELL. (b): subjective quality of threemethods in terms of clearness, naturalness,
similarity, and acceptability. MicPro performs similarly to McAdam andmuch higher than VoiceMask. (c) WER of three methods
across three ASRs. MicPro performs the best in crdnn-rnn and wav2vec2 and keeps a comparable performance in transformer
with McAdam and VoiceMask.

Datasets EER (T1/T2) MMR (T1/T2) STOI (T1) WER (T2)

VoxCeleb1 (E) 14.49%/- 76.5%/- 0.775 ± 0.036 -
VCTK (E) 12.56%/15.10% 42.62%/68.33% 0.792 ± 0.050 2.03%
AISHELL (C) 18.09%/21.00% 57.14%/57.29% 0.788 ± 0.046 5.58%

Table 4: The overall performance of MicPro in three different
datasets. E: English, C: Chinese.

for G.729). We compared the relative latency of our modified ver-
sion to the original G.729 codec and found that the difference was
negligible, with an average relative increase of only 0.01%.

Subjective quality. Besides the STOI, we conduct a user study
to evaluate the subjective quality of MicPro. The subjective quality
score represents the clearness, naturalness, similarity, and accept-
ability of anonymized audio rated by 40 participants. As shown
in Fig. 12(a), MicPro achieves a comparable performance with
McAdam while the score of VoiceMask is lower than others. How-
ever, we note that usability and anonymity are trade-offs, so com-
paring usability alone is meaningless. As shown in Fig. 11(b), the
anonymity of Mcadam is the worst among the three systems, indi-
cating that Mcadam compromises anonymity for better audibility.
In summary, MicPro can well maintain both anonymity and audi-
bility.

WER. Task 2 requires that the ASRs can correctively recognize
the anonymized speech. Figure 12(c) shows the WERs of all three
anonymization systems with three different ASRs.We observed that
MicPro has the lowest WER for crdnn-rnn and wav2vec2 models.
While for the transformer model, MicPro does not perform out-
standingly, it still maintains an acceptable performance compared
with the other two baselines. It means that our system can also
meet the requirements of the traditional task.

6.3 Impact factors
6.3.1 Datasets. To figure out our system’s generality, we experi-
mented to compare the performance of MicPro in another English
dataset (VCTK) and a Chinese dataset (AISHELL). The ASV model
we use is a pretrained ECAPA-TDNN model, and the ASR mod-
els are a pretrained wav2vec2 model for VCTK and a transformer
model for AISHELL. As Tab 4 shows, when we transfer our model
to VCTK, another English dataset, MicPro degrades about 2% in

Method EER (D/I) MMR (D/I) STOI (D/I)

Original 0.00%/1.54% 0.00%/0.00% 1.0/1.0†
MicPro 16.92%/25.60% 51.54%/87.69% 0.737 ± 0.041/0.727 ± 0.034
McAdam 12.31%/24.62% 60.00%/82.30% 0.819 ± 0.040/0.782 ± 0.027
VoiceMask 6.92%/9.99% 44.62%/58.46% 0.705 ± 0.044/0.704 ± 0.038

Table 5: Results of Direct and Indirect human speakers. D:
direct, I: indirect. †: We use original human speakers audio
as the reference for STOI.

EER and 10% in MMR. We assume that it is because VCTK is a
high-quality audio dataset with a sample rate of 48kHz. As for
AISHELL, MicPro can maintain high performance with an EER
of about 19%, but the MMR drops at about 5%. Again, we assume
that it is due to the difference in language. For the STOI and WER,
MicPro keeps good performance in these two datasets. However,
we believe these questions are existing engineering questions. Our
system only suffers a slight influence with a decrease of EER below
2%, which illustrates that MicPro has a good generality in different
datasets.

6.3.2 Voice Sources. From a more realistic perspective, the voice
sources can be either direct human speakers or indirect human
speakers speaking through loudspeakers in scenarios such as virtual
calls. To evaluate the performance of MicPro in these cases, we con-
ducted physical-domain experiments, following the setup presented
in Fig. 10. Compared with the baselines, we list the anonymity and
usability metrics in Tab. 5. The ASVs and ASRs for evaluation are
ECAPA-TDNN and wav2wec, respectively. The results show that
MicPro and McAdam yield a higher performance in anonymity but
lower in usability due to the inevitable distortion in the physical
domain, especially for indirect speakers. MicPro achieves better
performance in all metrics compared with VoiceMask, and in EER
and indirect MMR compared with McAdam.

6.3.3 Individualities. During the evaluation, we were concerned
that the anonymity performancewould show distinctiveness among
different human speakers. It means some people’s speech could be
well anonymized while others could not. Therefore, we compute
the standard deviation of MMRs of 40 different human speakers and
get the result of 0.32. Compared with the std of 0.335 of Mcadam
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Figure 13: Results of the recovery attempts. (a): the cosine
distances and STOI cores of anonymized and reversed sam-
ples. Only a few of samples marked with purple achieve a
successful recovery. (b): the number of successful attempts
and successful rate of audio reversing. We get 88 successful
attempts out of 20,000. The successful rate is only 0.44%.

and 0.35 of VoiceMask, MicPro keeps an acceptable robustness to
the impact of human speakers.

6.4 Security Analysis
In this subsection, we evaluate the security of MicPro against vari-
ous threats, considering two types of attackers. (1) Ignorant attack-
ers have no knowledge of the victim’s use of an anonymization
system and feed anonymized audio into ASVs to conduct spoofing
attacks or inference attacks. (2) Informed attackers are aware of the
victim’s use of an anonymization system and attempt to recover
audios or enroll anonymized audios into ASVs before conducting
spoofing attacks or inference attacks.

6.4.1 Spoofing attack. Consider an ignorant attacker who attempts
to use anonymized audio to bypass the victim’s device identity
verification process. The resistance of MicPro to such attacks can
be observed in the MMR shown in Fig. 11(a), i.e., the probability
that anonymized audio is rejected. The attack success rate can be
calculated as 1-MMR. Notably, we observed that MicPro is most
effective in X-Vector, achieving an attack success rate reduction
of 1.95%. Even though the attack success rate is around 40% in
ECAPA-TDNN, it still outperforms the baselines by around 20%.

An informed attacker possessing knowledge of our anonymiza-
tion methods can recover the audio by a set of randomly guessed co-
efficients. An attacker can reverse the audio by the inverse transfor-
mation functions if she accidentally obtains coefficients, as the trans-
formation function is both monotonic and invertible (see Sec. 5.2.2
for proofs). It is infeasible to perfectly recover the original audio due
to the distortion introduced by the encoding process. Further more,
The coefficients are distributed continuously in [0, 2]1×3 ⊂ R1×3.
The probability of an attacker correctly guessing the coefficients is
theoretically 0. However, to conduct a spoofing attack, the attacker
does not need to recover the original audio perfectly. We therefore
relax the definition of a successful recovery as one in which the
voiceprint of the recovered audio matches the original one.

To assess the probability of an attacker successfully recovering
an audio, we conducted a Monte-Carlo Sampling experiment using
100 successfully-anonymized audios from LibriSpeech-test-clean.
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Figure 14: ACC of inference attack under ignorant and in-
formed attackers. MicPro *: using random coefficients.

For each selected audio, we randomly generated 200 sets of coef-
ficients and recovered the audio using the inversion functions of
the transformation functions. We calculated the cosine distance
between the recovered and original audios using the ECAPA-TDNN
model, and marked the results with cosine distances larger than
0.25 and STOI scores greater than 0.6 (without loss of usability) as
successfully-recovered samples.

Out of 20,000 attempts, we successfully recovered 88 audios, re-
sulting in a success rate of 0.44%. Figure 13 shows that the vast ma-
jority of recovered audios did not match the voiceprint of the origi-
nal and had severe degradation in speech quality. Figure 13(b) shows
that the successful rate fluctuates around 0.44% when the number
of attempts is large enough. Our experimental results demonstrate
that our method is highly resistant to random recovery, with an
expected probability of successful recovery of only 0.44%. If the
attacker aims to have at least one successful recovery with a rate
greater than 𝑝 , the number of attempts 𝑁 to make should satisfy
(1− 0.0044)𝑁 ≤ 1−𝑝 . For example, if 𝑝 = 0.99, 𝑁 should be at least
1045, and if 𝑝 = 0.95, 𝑁 should be at least 680. Even if the attacker
generates a large number of recovery audios, she still doesn’t know
which attempt is correct.

6.4.2 Inference Attack. In this scenario, an attacker attempts to
identify a victim’s true identity by enrolling a pool of potential
victims’ speech to ASVs. An ignorant attacker does not know the
audio has been anonymized and uses the original speech to en-
roll. In contrast, an informed attacker enrolls anonymized audios.
The attacker then compares the victim’s voiceprint with all enroll-
ments, and the one with the highest ASV score is considered to
be the victim’s real identity. We conducted an inference attack on
LibriSpeech-test-clean and calculated the inference accuracy (ACC),
as shown in Fig. 14. Our results indicate that MicPro got an ACC
of 48.5%, which is 17.5% lower than McAdam and 8.5% lower than
VoiceMask.

However, all three methods suffer from resistance degradation
when encountering an informed attacker, with an ACC of more than
90%. That’s because for all three methods, the audio is converted
in the same form with the same coefficients, and there is a high
level of similarity between anonymized audio of the same speaker.
To mitigate this threat, we can use MicPro with random available
coefficients sourced from the feasible solutions. The results demon-
strate that this random strategy dramatically reduces the threat
of an informed attacker, reducing the ACC from 96% to 24.5%. In
conclusion, our approach, MicPro, is more resistant to inference
attacks under informed attackers.
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7 DISCUSSION
MicPro is an SP-based method that uses a frame-by-frame approach
for speech processing. While ML-based methods may be better
suited for some tasks, SP-based methods are preferable for low-
latency applications. However, they suffer from limited prior knowl-
edge of voice features, making it challenging to find global optimal
coefficients that balance anonymity and usability across different
speakers. To address this, we can leverage the flexibility of CELP
coding, which allows for modifying various aspects of voiceprints,
such as pitch and excitation vectors. Future work can explore more
applications of CELP coding for speech anonymization.

While MicPro is a promising prototype for privacy by design,
our current implementation is limited to the G.729 codec, which
has an 8kHz sampling rate and may not meet the requirements
for high-quality audio transmission. However, we view this as an
engineering challenge and believe that MicPro has broader poten-
tial beyond the scope of this paper. In our future work, we plan to
adapt MicPro to 16kHz CELP codecs like G.722.2 (AMR-WB) and
evaluate its performance in practical applications.

8 RELATEDWORK
8.1 SP-based Anonymization
Signal processing (SP) methods can be used to modify speaker-
specific features like pitch, formant positions, and speech rate. One
way to do this is by using McAdams transformation to reposition
the poles in the LPC filter, as demonstrated by Patino et al. [39].
Another SP method is vocal tract length normalization (VTLN)
[17], which maps the frequency to another scale using a warping
function. However, thismethod is reversible, making it vulnerable to
de-anonymization attacks. Thus, Qian et al. [41, 42] use compound
warping functions to improve the irreversibility.

One drawback of these SP-based methods is that they do not
always separate the speaker-related and content-related features,
resulting in speech quality degradation and unnatural-sounding
speech that is incomprehensible. Therefore, it is generally believed
that SP methods cannot guarantee both audibility and anonymity
simultaneously. To address this challenge, Kai et al. [28] proposed
a data-driven method that optimizes the parameters of SP methods,
including VTLN, McAdams transformation, and other methods.

8.2 ML-based Anonymization
Compared with SP-based, ML-based anonymization is preferred
for its better performance. Most anonymization techniques aim to
fool ASV systems, which are often built using machine learning or
deep learning methods. Therefore, exploring the vulnerabilities of
ASVs is a useful method for anonymization.

Voice conversion (VC) and voice synthesis (VS) are two classi-
cal anonymization methods that work against ASVs by tampering
with the original speaker’s features. Justin et al. [27] transform the
speaker feature to another. Bahmaninezhad et al. [6] map it to an
average and anonymized feature. Fang et al. [18] randomly com-
bine multiple speakers’ vectors to access pseudo-speaker identities.
While state-of-the-art VC/VS algorithms can achieve anonymity
and maintain high-quality and naturalness of the audio, they are
unsuitable for scenarios such as virtual calls.

Adversarial example (AE) is a popular method for exploiting
neural network complexity and poses a threat to it. When used
in anonymization systems, AE can protect privacy. Yi et al. [56]
first proposed FAPG, which trains an AE generator and speakers’
feature map to generate speaker-related adversarial examples to
misguide traditional ASVs. V-Cloak, proposed by Deng et al. [15],
achieves a transferable anonymizer. However, existing AE-based
techniques lack interpretability and may not be suitable for light-
weight microphone hardware with streaming input and output.

9 CONCLUSION
We propose MicPro, a privacy-preserving approach aimed at en-
abling hardware deployment for general use, especially in virtual
calls and meetings. MicPro exploits the existing CELP codec, reduc-
ing the overhead of the algorithm while meeting the requirement
of low latency. Therefore, it can be embedded and deployed in a
microphone module in a lightweight manner. This paper presents
the prototype of MicPro, that is, the modification of the speech is
realized by modifying the signal processing flow of the CELP codec.
In addition, this work uses a developed CELP codec and deploys it
in a microphone to verify the feasibility of MicPro. Compared with
the baseline, the flexible configuration of coefficients enables us
to achieve a better trade-off between anonymity and usability. Fu-
ture directions include exploring other privacy-preserving methods
based on CELP and adapting MicPro for more applications.
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