
Poltergeist: Acoustic Adversarial Machine Learning
against Cameras and Computer Vision

Xiaoyu Ji1, Yushi Cheng1, Yuepeng Zhang1, Kai Wang1, Chen Yan1, Wenyuan Xu1†, Kevin Fu2

1Ubiquitous System Security Lab (USSLAB), Zhejiang University
2Security and Privacy Research Group (SPQR), University of Michigan

{xji, yushicheng, ypzhang, eekaiwang, yanchen, wyxu}@zju.edu.cn, kevinfu@umich.edu

Abstract

Autonomous vehicles increasingly exploit computer-vision-
based object detection systems to perceive environments and
make critical driving decisions. To increase the quality of
images, image stabilizers with inertial sensors are added to
alleviate image blurring caused by camera jitters. However,
such a trend opens a new attack surface. This paper identifies
a system-level vulnerability resulting from the combination of
the emerging image stabilizer hardware susceptible to acoustic
manipulation and the object detection algorithms subject to
adversarial examples. By emitting deliberately designed acous-
tic signals, an adversary can control the output of an inertial
sensor, which triggers unnecessary motion compensation and
results in a blurred image, even if the camera is stable. The
blurred images can then induce object misclassification affect-
ing safety-critical decision making. We model the feasibility
of such acoustic manipulation and design an attack framework
that can accomplish three types of attacks, i.e., hiding, creat-
ing, and altering objects. Evaluation results demonstrate the
effectiveness of our attacks against four academic object detec-
tors (YOLO V3/V4/V5 and Fast R-CNN), and one commercial
detector (Apollo). We further introduce the concept of AMpLe
attacks, a new class of system-level security vulnerabilities
resulting from a combination of adversarial machine learning
and physics-based injection of information-carrying signals
into hardware.

I. INTRODUCTION

Autonomous vehicles depend on computer-vision-based ob-
ject detection algorithms to automatically classify objects
when cameras capture road images. Correct classification in
the midst of a dedicated adversary is important to ensure
safe driving decisions. If an adversary can hide, create, or
alter the classification results of objects within an image, e.g.,
failing to detect a pedestrian, the autonomous vehicle could
be fooled into making a tragic decision. Since the quality of
captured images is critical for robust object detection, modern
cameras not only consist of an image sensor, e.g., a CMOS
(complementary metal-oxide semiconductor) or CCD (charge-
coupled device) sensor, but also an image stabilizer designed
to de-blur the images by compensating the jitters of the
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Figure 1: By injecting acoustic signals into the inertial
sensors of object-detection systems in autonomous vehicles,
an adversary can fool decision making.

cameras. The added feature, i.e., image stabilization, improves
the image quality in benign scenarios, yet could be exploited
by dedicated adversaries. In this paper, we identify a new class
of system-level vulnerabilities resulting from the combination
of the emergent image stabilization hardware susceptible to
acoustic manipulation and the object detection algorithms
subject to adversarial examples, and design Poltergeist
attacks (in short, PG attacks) that exploit such vulnerabilities.

Unlike existing work that focused on altering what the
main sensors (e.g., CMOS sensors) perceive by changing the
visual appearance of an object [12], [38], [59], [27] or by
projecting lights into the camera [22], our work calls attention
to auxiliary sensors that are used to assist the main ones, e.g.,
inertial sensors provide motion feedback to the stabilizer for
image blur reduction. In light of prior work illustrating that
acoustic signals can control the output of accelerometers [43],
[48] and gyroscopes [37], [45], we investigate the feasibility
of acoustically manipulating the image stabilization process so
as to cause misclassification of objects, despite the fact that the
camera is stationary. The insight into such threats is essential
to expand our ability to secure future devices, as an increasing
number of sensors may be added to the feedback control loop
to increase the intelligence level of such autonomous systems.

Essentially, PG attacks are initiated by controlling the in-
ertial sensors of the stabilizer via resonant acoustic signals,
which creates blurred images because of unnecessary stabiliza-
tion, and finally results in misclassification. To model the va-
lidity of acoustic attacks worming their way into classification
algorithms of object detection systems, two research questions



remain unanswered. The first is to quantify the impact of
acoustic attacks on the level and patterns of the image blur,
regardless of the type of cameras. Without loss of generality,
we choose the inertial sensor readings (e.g., acceleration) to
quantify the camera motions caused by acoustic manipulation
and build a motion blur model to describe the relationship
between the sensor readings and the resulted blur patterns. The
second is to find an effective blurred image that will lead to
successful misclassification. Much work on creating effective
adversarial samples requires the machine learning algorithms
to be white-box, yet we consider the object detection algo-
rithms as black-box to mimic a real-world attack. To find an
effective blurred image that can lead to misclassification, we
construct a gradient-free optimization method that can lead to
the following three types of attacks:
• Hiding attacks (HA) cause an object to become unde-

tected, e.g., make a front car “disappear” (Fig. 1).
• Creating attacks (CA) induce a non-existent object, e.g.,

create a car or a person in the driveway.
• Altering attacks (AA) cause an object to be misclassi-

fied, e.g., render a person detected as a fire hydrant.
To validate PG attacks, we examine the effectiveness of

acoustic manipulation on a standard library of roadway images
to predict the behavior of existing and future autonomous ve-
hicles, and test the PG attacks using standard academic object
detectors as well as a standard commercial object detector in
autonomous vehicles. In summary, our contributions include
the points below:
• To the best of our knowledge, this is the first work to

exploit the cameras’ auxiliary sensor vulnerabilities via
acoustic manipulation to create misclassification in object
detection systems.

• We model the limits of PG attacks and construct gradient-
free algorithms to create adversarial blurry images that
can lead to three undesired consequences: hiding objects,
creating objects, and altering objects.

• We validate the effectiveness of PG attacks with four
academic object detectors (YOLO V3/V4/V5 and Fast
R-CNN) and one commercial detector (Apollo).

Poltergeist attacks serve as the first instance of a
broad range of emerging vulnerabilities we call AMpLe at-
tacks (injecting physics into Adversarial Machine Learning).
AMpLe attacks combine weaknesses (1) in the physics of hard-
ware [13] (2) and in adversarial machine learning (3) to cause
a system-level exploit. With the proliferation of sensors in
intelligent cyberphysical systems, we envision that in addition
to acoustic signals, future AMpLe attacks could leverage signal
transmission via ultrasound [55], [49], [51], visible light,
infrared, lasers [41], radio [20], magnetic fields, heat, fluid, etc.
to manipulate sensor outputs and thus the subsequent machine
learning processes (e.g., voice recognition, computer vision).
Emerging cyberphysical systems depend on trustworthy data
from sensors to make automated decisions. AMpLe attacks
could cause incorrect, automated decisions with life-critical
consequences for closed loop feedback systems (e.g., medical
devices [31], autonomous vehicles, factory floors, IoT).
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Figure 2: Object-detection systems typically utilize image
stabilization with inertial sensors to reduce the blur effect
caused by camera motions, and to improve the accuracy
of object detection.

II. BACKGROUND

In this section, we first introduce the object-detection system
and the image stabilization system, and then summarize the
sensor vulnerabilities that can be used for attacks.

A. Object Detection

Autonomous vehicles rely on computer vision algorithms
to detect objects in the environment. As shown in Fig. 2, the
object-detection systems work as the following. First, image
sensors such as CMOS or CCD sensors convert the lights
reflected from physical objects to electrical signals, which are
processed and digitized to create digital images. Then, object
detectors utilize machine learning algorithms to classify the
objects in the images, which will be used for decision making.
State-of-the-art object detectors utilize convolutional neural
networks (CNNs) for object detection. Two of the most widely
used ones are YOLO V3 [33] and Faster R-CNN [15], which
are two-stage and one-stage object detectors, respectively.

B. Image Stabilizer

In practice, photos captured by the image sensors can be
blurred due to the motions that occur within the exposure
duration. The larger the motion, the heavier the blur. To
obtain a clear photo, modern camera systems exploit an image
stabilizer to reduce the unwanted blur effects. Popular image
stabilization techniques include (1) optical image stabilization
(OIS) that shifts the camera lens or image sensors physically
such that the images can be projected onto the “station-
ary” imaging plane [6], (2) mechanical image stabilization
(MIS) that compensates for camera motions by actuating an
external camera stabilizer in an opposite way [4], and (3)
digital/electronic image stabilization (DIS or EIS) that elim-
inates blur patterns through software-based image processing
algorithms [47], [26], [11].

Among the aforementioned image stabilization techniques,
precise motion estimation is essential. To achieve it, micro-
electro-mechanical systems (MEMS) inertial sensors, i.e., ac-
celerometers and gyroscopes, are widely integrated into image
stabilizers, and the sensor measurements are fed back to
compensate for the blurry images, as shown in Fig. 2. Image
stabilizers with inertial sensors are commonly used in various
systems, including autonomous vehicles [18], smartphones,
sports cameras, etc.
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(a) Car detected without any motion
blur (confidence score 0.997)

(b) Car detected (0.919) after linear
motion blur (slight, horizontal)

(c) Nothing detected after linear mo-
tion blur (medium, horizontal)

(d) Nothing detected after linear mo-
tion blur (heavy, horizontal)

Figure 3: A car cannot be correctly detected under increasing linear motion blur.

(a) Nothing detected for the original
image without any motion blur

(b) Person detected (0.902) after lin-
ear motion blur (slight, horizontal)

(c) Boat detected (0.894) after linear
motion blur (heavy, inclined)

(d) Car detected (0.851) after linear
motion blur (heavy, horizontal)

Figure 4: The region with no interested objects can be incorrectly detected as a person (b), a boat (c), and a car (d)
under different linear motion blur.

(a) Car detected without any motion
blur (confidence score 0.979)

(b) Car is misclassified as bus (0.99)
after linear motion blur (slight, verti-
cal)

(c) Car is misclassified as bottle
(0.439) after rotational motion blur
(slight, anticlockwise)

(d) Car is misclassified as person
(0.969) after rotational motion blur
(heavy, anticlockwise)

Figure 5: A car can be incorrectly detected as a bus (b), a bottle (c), and a person (d) under different motion blur.

C. Inertial Sensor Vulnerability to Acoustic Signals
MEMS inertial sensors, e.g., accelerometers and gyro-

scopes, are known to be vulnerable to resonant acoustic
injection attacks [37], [43], [48], [45]. Both the MEMS
accelerometers and gyroscopes rely on sensing masses to
measure the inertial stimuli. In particular, the sensing masses
move as they are exposed to stimuli, and their displacements
are mapped to measurable capacitance changes. In addition to
regular motion stimuli, the sensing mass can be influenced
by acoustic signals at the frequencies close to the natural
frequency of the mechanical structure of the mass, i.e., the
sensing mass is forced into resonance at the same frequency
as the sound pressure waves. As a result, the sensor can
output a controllable value according to the injected resonant
acoustic signal even if the sensor is stationary. This vulnera-
bility allows an attacker to manipulate the sensor outputs by
injecting carefully crafted acoustic signals. Much work [43],
[45] has demonstrated the feasibility of fine-grained control
over a MEMS inertial sensor’s output. For instance, Trippel
et al. [43] proposed the output biasing attack, which provides
fine-grained accelerometer output control, and Tu et al. [45]
showed similar attacks against gyroscopes. In this paper, we
utilize similar attacks to launch PG attacks.

D. Remark
In summary, object-detection systems rely on inertial sen-

sors to create photos free from motion blur. While the inertial

sensors provide motion feedback for the image stabilizer,
they also inevitably introduce acoustic injection vulnerabilities,
whereby an attacker can manipulate the sensor outputs and the
motion compensation process. Thus, photos produced after
unnecessary compensation may cause the object detection
algorithm to misclassify the objects.

III. PRELIMINARY ANALYSIS

The key of Poltergeist attacks involves two blocks that
(1) control the outputs of inertial sensors via acoustic signals,
and (2) create a blurry image that can lead to misclassification,
subject to the motion compensation constraints. Since the
acoustic manipulation is validated via prior work, in this
section we conduct a preliminary analysis to investigate the
feasibility of fooling object detectors by emulating the motion
compensation guided by the output of inertial sensors. Since
linear acceleration and rotation are the most dominant motions
measured by inertial sensors, we generate blurry images with
two common blur filters in Photoshop [1], i.e., the linear and
rotational motion blur filters, and test the misclassification re-
sults on a representative academic object detector, i.e., YOLO
V3. The images for motion compensation are selected from
an autonomous driving dataset BDD100K [53]. We adjust the
blur parameters randomly yet in three categories, e.g., slight,
media, heavy linear acceleration or rotational motion, and
we show a few representative results in Fig. 3-4, whereby a
detected object is marked as a rectangle with the confidence

3



Image Blurred
Image

Victim
Camera

Object     
Detector       

CNN

Input

Blur Pattern
Modeling

Attack Parameter 
Optimization

Sensor Output
Injection

Objective Function 
Design

Bayesian 
Optimization

Acoustic Resonant 
Frequency Discovery

False Output
Stabilization

Output Signal 
Reshape

Output

Speaker

Attack Building Blocks Actual System

Hiding

Creating

Altering

Attack 
Objectives

Camera Motion 
Modeling

Pixel Motion 
Modeling

Heterogeneous 
Motion Blur Model

Figure 6: PG attacks: The adversary first uses an image of the target object to generate feasible attack parameters
with blur pattern modeling and attack parameter optimization. Then, the adversary manipulates the sensor outputs
according to the calculated parameters via acoustic signals to deceive the object detector, which may lead to hide,
create, or alter objects.

scores and the type of predicted classes. The preliminary
results illustrate the following key insights.

Observation: The blur caused by unnecessary motion
compensation can change the outline, the size, and even
the color of an existing object or an image region without
any objects, which may lead to hiding, altering an existing
object, or creating a non-existing object.

Hiding objects. As shown in Fig. 3, a car that was detected
with a high confidence score in the original image becomes
less likely to be classified correctly after being blurred with a
linear motion. As the degree of the blur increases, the detection
confidence drops until the object is unable to be detected at all.
Our hypothesis is that the unnecessary motion compensation
blurs the object outline and its color, which are critical in
extracting features for object detection.

Creating objects. As shown in Fig. 4, the original image
region where nothing interesting has been detected can be
detected with a person, a boat, or a car under various linear
motion blurs, even though the blurred images are meaningless
to a human.

Altering objects. As illustrated in Fig. 5, the car that
is correctly classified with a high confidence score in the
original image is misclassified as other classes and even
counterintuitive ones, e.g., a bus, a bottle, and a person under
the linear and rotational motion compensation. We observe
that for the latter two cases, the non-linear rotational motion
compensation has played a dominant role, since such motion
blurring may have changed the shape of the red car into a
person’s head.

The aforementioned three types of misclassification cases
demonstrate the feasibility of deceiving object detectors using
the blurring effect and encourage us to further investigate
Poltergeist attacks via unnecessary motion compensa-
tion. The blurring effect is essentially the addition of pixels
at multiple locations determined by the motion displacement,
e.g., the color of the pixel in a blurred image is the sum of
the one at its origin and the one at distance. This motivates
us to model the blurring effect from the pixel perspective,
and quantify its impact on the object detection. In Sec. V,
we quantitatively model the blurring processes in terms of
creating images that lead to misclassification, and we refer to
such images as adversarial blurry images hereafter.

IV. THREAT MODEL

In this paper, we consider three types of attacks:
• Hiding attacks (HA), where the goal of the adversary is

to let the object detector fail to identify an object that is
of interest to the systems.

• Creating attacks (CA), where the adversary blurs the
images such that the object detector detects a non-existing
object as if it were physically present.

• Altering attacks (AA), where the adversary blurs the
image such that an object is misclassified to another
object.

In addition, we assume the adversary has the following
capabilities to achieve the aforementioned attacks:

Black-box Object Detector. We assume that the adversary
has no prior knowledge of the object detection algorithm,
including but not limited to its architecture, parameters, etc.
However, the adversary can obtain the classification results
and their confidence scores for each detected object, which
are default outputs for various object detectors, e.g., YOLO
V3, Faster R-CNN.

Camera and Sensor Awareness. The adversary can acquire
and analyze a camera of the same model as the one used in
the targeted system, from which she can learn the information
of the camera parameters, e.g., the camera focal length, the
camera exposure time, and the physical locations as well as
parameters of the inertial sensors.

Acoustic Attack Capability. We assume the adversary can
launch acoustic injection attacks towards the inertial sensors
in the target system. She may transmit acoustic signals by (1)
setting up a speaker or an ultrasonic transducer array along
the roadside, (2) attaching speakers to the surface of a target
system, or (3) controlling a compromised on-board speaker in
the target system, e.g., a speaker in the car.

V. ATTACK DESIGN

A. Overview

To generate adversarial blurry images via acoustic signals,
it is important to address the following two challenges:
• Challenge 1: How to quantify the impact of acoustic

manipulation upon the patterns and levels of the image
blur?
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• Challenge 2: How to optimize the blur patterns for an
effective and efficient attack against black-box object
detectors?

To have a scene misclassified, i.e., achieving HA, CA, and
AA attacks, PG incorporates three key modules as shown in
Fig. 6. The Blur Pattern Modeling module models the rela-
tionship between the sensor readings, i.e., the outputs of the
accelerometer and gyroscope, and the intended blur patterns.
The Attack Parameter Optimization module formulates the
attack as an optimization problem to find the feasible attacks
under different blur patterns, and derives the feasible solutions
in terms of sensor readings, i.e., accelerations and angular
velocities. The Sensor Output Injection module generates
an elaborate attack signal according to the expected sensor
readings, and transmits it to the sensor module of a camera
system to launch PG attacks. In the following sections, we
present our attack building blocks in detail.

B. Blur Pattern Modeling

To generate adversarial blur patterns via acoustic signals,
we first model the relationship between the manipulation of
sensor outputs and the resulted blur patterns.

1) From Sensor Outputs to Compensatory Camera Mo-
tions: To quantify the impact of acoustic manipulation, we
first model the false camera motion (FCM) caused by false
sensor outputs. Without loss of generality, the FCM has up
to six DOFs (degree-of-freedom), i.e., x-axis, y-axis, z-axis
caused by the accelerometer, and roll, pitch, yaw caused
by the gyroscope. For simplicity, we assume the x-y plane
is the imaging projection plane and FCMs in all the six
DOFs share the same original point, i.e., the physical center
of the camera. In this way, the FCMs can be denoted as
~Mf = {~ax,~ay,~az, ~ωr, ~ωp, ~ωy}, where ~ax, ~ay , and ~az are

the false sensor outputs of the x-axis, y-axis, and z-axis of
the accelerometer respectively, and ~ωr, ~ωp, and ~ωy are the
false sensor outputs of the roll, pitch, and yaw DOFs of the
gyroscope, respectively. As the compensatory camera motion
(CCM) is equivalent but inverse to the FCM, we then express
the compensatory camera motion under acoustic injection
attack as: ~Mc = {−~ax,−~ay,−~az,−~ωr,−~ωp,−~ωy}.

In this paper, we consider creation of adversarial blur
patterns via CCMs from two sets of DOFs: (1) in the imaging
projection plane, which correspond to motions in the x-axis, y-
axis, and roll DOFs, and (2) towards (backwards) the imaging
projection plane, which refer to motions in the z-axis DOF.
The other two DOFs are not exploited since they require
additional pixel information out of the captured scene, which
may not always be available in real-world attacks.

2) From Compensatory Camera Motions to Pixel Motions:
The compensation gives rise to pixel motions in the finally
formed image. In this subsection, we derive the pixel motions
under CCMs along different DOFs, and the complete deduc-
tion can be referred to in Appendix. A.

Pixel Motions caused by x-axis and y-axis CCMs. The x-
axis and y-axis CCMs introduce horizontal or vertical camera
displacements respectively, which will then change the optical

Table I: Summary of 3 Types of Motion Blur.

No. Sensor
Output

Blur
Type

Blur
Parameter

1 {~ax,~ay} Linear
~Lxy = f

2u (~ax + ~ay)T 2

α = arccos(
~ax·~ay
|~ax||~ay| )

2 ~az Radial p = ~azT
2

2u

3 ~ωr Rotational β = ωrT

path and result in pixel motions in the same DOF but in an
opposite direction, since the formed image is reverse to the
scene in the camera. Thus, a linear compensation in the x/y-
axis DOF causes a linear pixel motion in the formed image
expressed as f

2u~axT
2 or f

2u~ayT
2, where −~ax(−~ay) are the

acceleration along the x and y axes, f is the camera focal
length, u is the object distance, and T is the camera exposure
time. We refer to the pixel motions along the x-axis and y-axis
DOFs as linear motion.

Pixel Motions caused by the z-axis CCMs. The z-axis
CCM, however, gives camera displacements towards or away
from the scene, and changes imaging distances and therefore
pixel motions backwards or towards the image center [58]. For
each pixel in the output image, a CCM in the z-axis DOF with
an acceleration of −~az in fact gives rise to a pixel motion of
~azT

2

2u ro towards the image center, where ro refers to the pixel
distance to the image center. We refer to the pixel motions
towards or away from the image center as radial motion.

Pixel Motions caused by the roll CCMs. In contrast to
CCMs in the x-axis, y-axis, and z-axis DOFs that change the
optical path, CCMs in the roll DOF only rotate the image
sensor. As a result, a CCM in the roll DOF with an angular
velocity of −~ωr gives a pixel angular velocity of ~ωr. For each
pixel in the output image, the pixel motion is then determined
by its distance to the rotation center rc, the angular velocity
~ωr, and the exposure time T as ωrTrc. We call this type of
pixel motion rotational motion.

As the output image represents an integration of all pixel
motions during the camera exposure time, each type of mo-
tions introduces a specific blur pattern into the output images.

3) From Pixel Motion to Blur Patterns: Based on the
three kinds of pixel motions along different DOFs, we can
categorize the blur patterns into three types shown in Tab. I.

(1) Linear Motion Blur is the blur pattern caused by linear
pixel motions, as shown in Fig. 13(a). It is specified by the
camera focal length f , the camera exposure time T , the scene
distance u, and the x-axis and y-axis accelerations ~ax and ~ay .
Linear motion blur is formulated as {~Lxy , α}, where ~Lxy =
f
2u (~ax +~ay)T 2 and α = arccos(

~ax·~ay
|~ax||~ay| ), ~Lxy is the identical

pixel displacement of each pixel in the image and α is the
angle between ~Lxy and the y-axis. A representative example
is shown in Fig. 13(a) in Appendix. B.

(2) Radial Motion Blur is the blur pattern caused by radial
pixel motions along rays towards or away from the image
center, as shown in Fig. 13(b) in Appendix. B. It is specified
by the image center I , the exposure time T , the scene distance
u, and the z-axis acceleration ~az . We denote radial motion blur
as p = ~azT

2

2u .
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(3) Rotational Motion Blur is the blur pattern caused by
rotational pixel motions along an arc, as shown in Fig. 13(c)
in Appendix. B. It is specified by the rotation center C, the
exposure time T , and the angular velocity ~ωr in the roll DOF.
We use a rotation angle to express the rotational motion blur
as β = ωrT .

4) Heterogeneous Motion Blur Model: Considering that
pixel motions can simultaneously occur along multiple DOFs,
resulting in heterogeneous blur patterns as shown in Fig. 13(d)
in Appendix. B, we build a heterogeneous motion blur model
for the final output image to describe the blur patterns caused
by compensatory camera motions in the four aforementioned
DOFs.

Denote B as the final blurred image and X as the originally
unblurred one. For each pixel B(i, j) located in row i and
column j in the blurred image B, we have:

B(i, j) =
1

T

∫ 0

−T

X(i+ u(t), j + v(t))dt (1)

where u(t) and v(t) are the pixel motion functions in the x-
axis and y-axis, respectively, I = (o0, o1) is the center of
image X and C = (c0, c1) is the rotational center.

By discretization, B(i, j) can be estimated by:

B(i, j) =
1

n+ 1

0∑
k=−n

X(i+ u(k · T
n

), j + v(k · T
n

))

=
1

n+ 1

0∑
k=−n

X(i′(k), j′(k))

(2)

From Equ. (1) and Equ. (2), we can observe that the blur
patterns depend on the camera exposure time and the pixel
motions in the image plane. The key to model the heteroge-
neous motion blur is to resolve the pixel location (i′(k), j′(k))
at each discrete time k during the exposure time, which can
be retrospectively calculated with the final pixel location (i, j)
and the pixel motion functions in the x-axis and y-axis as:

[i′(k), j′(k)]T = H(i, j, u(k), v(k))

= [u(k), v(k)]T + [i, j]T
(3)

where u(k) and v(k) are the pixel motion displacements in
the x-axis and y-axis at the time k, respectively. Based on the
three types of motion blur patterns analyzed above, we can
further derive u(k) and v(k) as:

[u(k), v(k)]
T

=

[
cosα cos( k

nβ + γ) cos δ
sinα sin( k

nβ + γ) sin δ

] kf|~ax+~ay|T2

2nu
rc

k|~az|T2ro
2nu


γ = arctan(

j − c1
i− c0

), rc = ‖(i, j), (c0, c1)‖2

δ = arctan(
j − o1
i− o0

), ro = ‖(i, j), (o0, o1)‖2
(4)

where γ is the angle between the y-axis and the radius
rc specified by (c0, c1) and (i, j), δ is the angle between
the y-axis and the radius specified by (o0, o1) and (i, j).
Together with Equ. (2), Equ. (3), and Equ. (4), which form
the heterogeneous motion blur model, we can obtain B(i, j)
and thus the entire blurred image B.

C. Gradient-Free Attack Parameter Optimization

With the heterogeneous motion blur model, we are able to
simulate the blur effects via changing the four parameters, i.e.,
~ax,~ay,~az, ~ωr of accelerometer and gyroscope. To improve the
attack effectiveness, we design objective functions specific to
hiding, creation, and alteration attacks (HA, CA, and AA).

As mentioned in Sec. II, to implement practical adversarial
attacks, we consider the object detector to be black-box since
we cannot always obtain the network frameworks and param-
eters in real-world attacks. For a black-box object detector,
given an input X , it makes several most possible predictions
Y = f(X). Each prediction Yi ∈ Y can be represented as:

Yi = (Bi, S
B
i , Ci, S

C
i ) (5)

where Bi and Ci are the bounding box and class of the
prediction, and SBi and SCi are the corresponding confidence
scores. An adversarial example in our case refers to a blurred
image B determined by attack parameters {~ax,~ay,~az, ~ωr},
i.e., B = X ′ = X + ∆. To implement an effective attack,
we try to resolve optimized adversarial examples (attack
parameters) with objective functions specifically designed for
each attack.

1) Objective Functions: To optimize HA, CA, and AA, we
consider the following three factors: (1) the product of the
bounding box confidence score SBi and the class confidence
score SCi that determines whether the object can be detected,
i.e., the product should be larger than a threshold for the
object to be detected, (2) the intersection over union Uij
that indicates the overlapping degree of the bounding box Bi
and the bounding box Bj , and (3) the magnitude of ∆ that
represents the degree of blur effects. The former two factors
determine the attack success rate while the last one presents
the attack cost. We take all of them into consideration to strike
the balance of attack success rate and cost.

For HA, to hide the prediction of a particular object of
interest Yi, the product of SBi and SCi should be less than the
threshold that determines whether the object can be detected,
and the magnitude of ∆ that represents the attack cost should
be minimized to ease the burden of acoustic injection attacks.
Therefore, the objective function for HA can be given as:

HA: argmin
~ax,~ay,~az ,~ωr

w1S
B
i S

C
i + w2||∆||p

s.t. |~ax + ~ay + ~az| < ξ1
|~ωr| < ξ2

(6)

where w1 and w2 are the weights that balance the attack
success rate and cost, and ξ1 and ξ2 are the physical attack
capability restrictions of accelerometers and gyroscopes.

For CA, to create a prediction of an object of interest that is
not present physically in the image (denoted as Yo), the class
of the created prediction Co shall be the targeted class T , the
product of SBo and SCo should be larger than the threshold, the
sum of intersections over union of the created box Bo with any
Bi ∈ Y shall be minimized to ensure that it is created rather
than transformed from existing objects, and the magnitude of
∆ should be minimized to reduce the attack cost. Therefore,
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the objective function for targeted CA can be given as:

CA: argmin
~ax,~ay,~az,~ωr

−w3
SB
o S

C
o |Co=T∑m
i=1 Uoi

+ w4||∆||p

s.t. |~ax + ~ay + ~az| < ξ1
|~ωr| < ξ2

(7)

Similarly, w3 and w4 are the weights that balance the attack
success rate and cost for CA.

For AA, to alter the prediction of an object of interest in the
image, i.e., from Yi to Y ′i , the class of the altered prediction
C ′i shall be the targeted class T , the product of SBi

′ and SCi
′

should be larger than the threshold, the intersection over union
Uii′ of the altered box B′i and the benign box Bi shall be
maximized to guarantee that it is transformed from the object
of interest, and the magnitude of ∆ should be minimized to
reduce the attack cost. Thus, we give the objective function
for targeted AA as follows:

AA: argmin
~ax,~ay,~az,~ωr

−w5Uii′S
B
o S

C
o |Co=T + w6||∆||p

s.t. |~ax + ~ay + ~az| < ξ1
|~ωr| < ξ2

(8)

where w5 and w6 are the weights for AA.
In summary, to optimize PG attacks, we take the attack suc-

cess rate, object location, and attack cost into comprehensive
consideration, and design objective functions specific to each
type of attack.

2) Bayesian Optimization: To optimize the designed ob-
jective functions, we employ Bayesian Optimization [23], a
sequential design strategy for global optimization of black-
box functions that does not assume any functional forms. The
reason to choose Bayesian Optimization is that we regard
object detectors as black-box and thus only prediction outputs
are used in objective functions. As a result, the objective
functions can be considered as black-box as well, and com-
mon derivative-based optimization methods such as gradient
descent are not applicable.

We use the implementation from [28] in this paper, which
works by constructing a posterior distribution of functions that
best describes the target function. Since the target function
is unknown to the algorithm, Bayesian Optimization first
constructs a prior distribution over the target function using
a Gaussian Process [5]. An exploration strategy, e.g., Upper
Confidence Bound [10] or Expected Improvement [19], is
then used to determine the next point to be explored. As the
number of observations grows, the algorithm becomes more
certain of which regions in parameter space to explore and the
prior distribution is iteratively updated to form the posterior
distribution over the target function, either until it converges
or the iterations end.

D. Launching Sensor Output Manipulation Attack

With the optimized attack parameters, i.e., the desirable
sensor outputs, we then inject crafted acoustic signals into
the targeted camera system. To achieve it, we resort to the
output biasing attack proposed in [43], which utilizes the

sampling deficiencies at the analog-to-digital converter (ADC)
and gives an adversary control over the inertial sensor’s output
for several seconds.

Manipulating a false sensor output via the output biasing
attack has three steps: (1) finding the acoustic resonant fre-
quency of the target sensor by frequency sweep, (2) stabilizing
fluctuating false outputs into constant outputs by shifting the
acoustic resonant frequency to induce a direct current alias
at the ADC, and (3) reshaping the desired output signal by
modulating it on top of the acoustic resonant frequency. The
details of these steps can be found in [43].

The sensor outputs under PG attacks are the linear superpo-
sition of (1) the actual motions of the sensor, (2) the induced
false motions caused by the output biasing attack, and (3) the
false motions caused by ambient noises at other frequencies.
Among the three components, the actual motions of the camera
(sensor), if they exist, will be correctly compensated by the
image stabilization and thus result in no blur. The false
motions caused by both PG attacks and the ambient noises, on
the contrary, will cause unnecessary compensation and lead to
undesired blur. Considering that the strength of the ambient
noises is far less than PG acoustic signals, PG attacks dominate
the sensor outputs and the blur patterns in the final images,
even when the sensor is in a moving vehicle or in a noisy
environment.

VI. EVALUATION

In this section, we evaluate PG attacks against object-
detection systems. We consider two sets of evaluations in
this paper: (1) simulated attack evaluation, where adversarial
blurry images are generated by our blur model with public
autonomous driving image datasets as input, and (2) real-
world evaluation, where the blurred images are captured by
a commercial camera product with an image stabilization
system, i.e., a smartphone in a moving vehicle under the
acoustic signal injection attacks. In both evaluations, the blurry
images are fed into the CNN algorithms for object detection.

We use the attack success rate (SR) as the metric, which
is the ratio of the number of successful attacks against an
object detector over the total number of conducted attacks. In
summary, we highlight the key result of PG attacks as follows:

• For the simulation evaluation, HA can achieve an overall
SR of 100%, scenario-targeted CA can achieve an overall
SR of 87.9%, and scenario-targeted AA can achieve an
overall SR of 95.1% against the four academic object
detectors YOLO V3/V4/V5 and Fast R-CNN, and the
commercial one, i.e., YOLO 3D used in Baidu Apollo [3].

• For the real-world evaluation, PG attacks towards a Sam-
sung S20 smartphone on a moving vehicle at four typical
scenes demonstrate an average success rate of 98.3% for
hiding attacks, 43.7% for creation attacks, and 43.1% for
altering attacks.

• PG attacks are robust across various scenes, weathers,
time periods of a day, and camera resolutions.

7



Table II: Summary of used datasets BDD100K and KITTI.

Dataset Resolution # of
Images Classes of Interest

# of Objects of Interest Detected
YOLO
V3 [52]

YOLO
V4 [2]

YOLO
V5 [46]

Faster
R-CNN [34] Apollo [3]

BDD100K 1080×720 200 person, car, truck, bus,
traffic light, stop sign

741 1531 1708 1125 993
KITTI [14] 1242×375 200 651 1425 1543 1059 904

A. Experimental Setup

Object Detectors. We evaluate PG attacks using four aca-
demic object detectors YOLO V3/V4/V5 [52], [2], [46] and
Faster R-CNN [8], and one commercial object detector YOLO
3D used in Apollo [3]. The former four are representative
models of one-stage and two-stage detectors for general object
detection while the commercial YOLO 3D is a customized
detector designed for autonomous driving. The backbone net-
works used for the pre-trained models YOLO V3/V4/V5 and
Faster R-CNN are Darknet-53 and ResNet-101, respectively.
The four academic detectors are all trained on the Common
Objects in Context (COCO) dataset [9] and Apollo is trained
on an unrevealed backbone network and dataset.

Classes of Interest. Given the real-world situations of
autonomous driving, we consider 6 representative classes of
interest in this paper: person, car, truck, bus, traffic light, and
stop sign. The other classes are thus regarded as classes of
uninterest. Objects belonging to classes of interest and classes
of uninterest are then called objects of interest and objects
of uninterest, respectively. For the aforementioned detectors,
YOLO V3/V4/V5 and Faster R-CNN support the detection
of all 6 classes of interest while Apollo does not support the
detection of traffic light and stop sign.

Fine-grained Attack Forms. We implement 3 fine-grained
attack forms in this paper: (1) untargeted, (2) scenario-targeted,
and (3) targeted. For HA, we implement the targeted form,
i.e., “one to none”, which hides an object of interest in the
scene. For CA, we implement all three attack forms, where
untargeted CA (“none to any”), scenario-targeted CA (“none
to a set”), and targeted CA (“none to one”) create an object
of any classes, any classes of interest, and a specific class,
respectively. Similarly, for AA we have untargeted AA (“one
to any”) that alters an object of interest into an object of
any other classes, scenario-targeted AA (“one to a set”) that
alters an object of interest into any objects of uninterest
or an object of uninterest into any objects of interest, and
targeted AA (“one to one”) that alters an object of interest
into another specific object of interest. We introduce scenario-
targeted CA and AA since for autonomous driving, creating
an object of any classes of interest, e.g., person, car, etc, or
altering an object of uninterest into any objects of interest, e.g.,
fire hydrant to person, car, etc, may result in similar attack
consequences such as improper stops, respectively. Similarly,
altering an object of interest into any objects of uninterest,
e.g., car to bird, bottle, etc, may have similar impacts such as
resulting in car collisions. We envision this attack form reveals
the practical impacts of PG attacks in autonomous driving, i.e.,
the capabilities to affect decisions.

Computing Platform. We implement the aforementioned
object detectors in our lab with a server equipped with an

Intel Xeon Gold 6139 CPU @2.30 GHz, a GeForce RTX 2080
Ti GPU, and 128 GB physical memory, which is also used
to optimize attack parameters as well as generate adversarial
blurry images.

B. Simulation Evaluation

In the simulation evaluation, we use adversarial blurry
images generated by our model to spoof object detectors.

1) Datasets: We use two autonomous driving datasets
BDD100K [53] and KITTI [14] in the simulation evaluation.
BDD100K is the largest and most diverse open driving dataset
so far for computer vision research, which covers different
scenes, weather conditions, and times of day. KITTI is an-
other widely-used dataset in mobile robotics and autonomous
driving research, which captures real-world traffic situations
with many static and dynamic objects in diverse scenarios. For
both datasets, we randomly select 200 images for evaluation.
The numbers of objects of interest detected in the selected
BDD100K and KITTI images by each object detector are
summarized in Tab. II. The performance variations between
the detectors are caused by the following reasons: (1) Var-
ious object detectors perform differently in detecting small
objects [32], and (2) Apollo does not support the detection of
traffic light and stop sign.

2) Attack Effectiveness: In this section, we evaluate the
effectiveness of hiding, creating, and altering attacks, respec-
tively. Illustrations of hiding, creating, and altering attacks on
BDD100K and KITTI images are shown in Appendix. B.

Hiding Attacks. The results summarized in Tab. III demon-
strate the overall attack success rates for hiding attacks.
For any target object detector, HA can achieve an overall
success rate (SR) of 100% towards objects of interest in
both BDD100K and KITTI images. Thus, HA shows a good
performance against both academic and commercial object
detectors.

Due to its high success rate, HA can pose a severe threat
to object detectors, especially in autonomous vehicles. For
instance, HA can hide any object of interest, e.g., person, car,
or traffic light, on the road with 100% SR, which may lead
to unintended operations of autonomous vehicles, resulting
in severe consequences such as hitting the person or car, or
driving through a red light.

Creating Attacks. The results summarized in Tab. IV
demonstrate the effectiveness of creating attacks. For YOLO
V3, untargeted CA can achieve overall SRs of 69.5% and
80.0% for BDD100K and KITTI images, scenario-targeted CA
can achieve overall SRs of 68.5% and 77.0%, and targeted
CA can achieve overall SRs of 16.6% and 19.7%. For YOLO
V4, the overall SRs are 93.0% and 91.5% for untargeted CA,
88.5% and 85.0% for scenario-targeted CA, and 34.3% and
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Table III: Effectiveness of Hiding Attacks.
Black-box
Detector

Overall Attack Success Rate
BDD100K KITTI

YOLO
V3/V4/V5

100%
(Avg.)

person (100%), car (100%), truck (100%),
bus (100%), traffic light (100%), stop sign (100%)

100%
(Avg.)

person (100%), car (100%), truck (100%),
bus (100%), traffic light (100%), stop sign (100%)

Faster
R-CNN

100%
(Avg.)

person (100%), car (100%), truck (100%),
bus (100%), traffic light (100%), stop sign (100%)

100%
(Avg.)

person (100%), car (100%), truck (100%),
bus (100%), traffic light (100%), stop sign (100%)

Apollo 100%
(Avg.)

person (100%), car (100%),
truck (100%), bus (100%)

100%
(Avg.)

person (100%), car (100%),
truck (100%), bus (100%)

Table IV: Effectiveness of Creating Attacks.
Black-box
Detector

Creating
Attack

Overall Attack Success Rate
BDD100K KITTI

YOLO
V3

Untargeted† 69.5% 80.0%
Scenario-targeted‡ 68.5% 77.0%

Targeted§ 16.6%
(Avg.)

person (12.0%), car (57.5%),
truck (8.5%), bus (7.0%),

traffic light (13.5%), stop sign (1.0%)

19.7%
(Avg.)

person (31.0%), car (58.0%),
truck (8.5%), bus (7.0%),

traffic light (10.5%), stop sign (3.0%)

YOLO
V4

Untargeted 93.0% 91.5%
Scenario-targeted 88.5% 85.0%

Targeted 34.3%
(Avg.)

person (42.5%), car (83.5%),
truck (30.0%), bus (12.5%),

traffic light (34.5%), stop sign (2.5%)

31.6%
(Avg.)

person (52.5%), car (72.5%),
truck (31.5%), bus (10.0%),

traffic light (22.5%), stop sign (0.5%)

YOLO
V5

Untargeted 97.5% 96.5%
Scenario-targeted 96.0% 95.0%

Targeted 37.7%
(Avg.)

person (57.5%), car (90.5%),
truck (23.5%), bus (14.0%),

traffic light (37.5%), stop sign (3.0%)

39.8%
(Avg.)

person (71.0%), car (87.0%),
truck (25.5%), bus (9.5%),

traffic light (40.5%), stop sign (5.5%)

Faster
R-CNN

Untargeted 97.4% 97.9%
Scenario-targeted 95.9% 96.9%

Targeted 37.9%
(Avg.)

person (65.0%), car (88.7%),
truck (19.6%), bus (30.9%),

traffic light (20.1%), stop sign (3.1%)

40.9%
(Avg.)

person (88.7%), car (80.4%),
truck (12.4%), bus (31.4%),

traffic light (16.0%), stop sign (16.5%)

Apollo
Untargeted 91.2% 96.0%

Targeted 40.2%
(Avg.)

person (47.4%), car (79.9%),
truck (18.0%), bus (15.5%)

46.2%
(Avg.)

person (67.7%), car (83.8%),
truck (15.2%), bus (18.2%)

† Untargeted: none to any ‡ Scenario-targeted: none to a set §Targeted: none to one

31.6% for targeted CA. For YOLO V5, the overall SRs are
97.5% and 96.5% for untargeted CA, 96.0% and 95.0% for
scenario-targeted CA, and 37.7% and 39.8% for targeted CA.
For Faster R-CNN, the overall SRs are 97.4% and 97.9% for
untargeted CA, 95.9% and 96.9% for scenario-targeted CA,
and 37.9% and 40.9% for targeted CA. For Apollo, since
it hardly detects any object of uninterest, scenario-targeted
CA is basically equal to untargeted CA. Thus, we conduct
the untargeted and targeted CA only. For untargeted CA, it
can achieve overall SRs of 91.2% and 96.0% for BDD100K
and KITTI images while for targeted CA, it can achieve
overall SRs of 40.2% and 46.2%. Note that higher overall
SRs of targeted CA here do not indicate that Apollo is more
vulnerable. The reason for the high overall SRs is that Apollo
does not detect traffic light and stop sign, which are more
difficult to create. Among five detectors, YOLO V5 and Faster
R-CNN are most vulnerable to CA. For both BDD100K and
KITTI images, the Top 3 objects that are most likely to be
injected are car, person, and truck.

Targeted CA is difficult in our case since we try to create
a non-existent object by manipulating its surrounding pixels
without modifying or adding any physical objects or lights like
prior works [57], [22]. Nevertheless, CA, especially scenario-

targeted CA, which we assume is more practical, can also pose
severe threats to autonomous driving by creating an object of
interest, e.g., person, car, etc, on the road with high successful
rates, which can lead to malicious driving behaviors such as
emergency brakes or detours.

Altering Attacks. The results summarized in Tab. V
demonstrate the effectiveness of altering attacks. When against
YOLO V3, untargeted AA can achieve overall SRs of 91.8%
and 98.7% for BDD100K and KITTI images, scenario-targeted
AA can achieve overall SRs of 82.2% and 96.9%, and targeted
AA can achieve overall SRs of 23.7% and 19.8%. For YOLO
V4, the overall SRs are 98.1% and 97.2% for untargeted AA,
97.9% and 95.6% for scenario-targeted AA, and 32.3% and
28.3% for targeted AA. For YOLO V5, the overall SRs are
99.6% and 99.3% for untargeted AA, 98.2% and 97.1% for
scenario-targeted AA, and 34.1% and 32.4% for targeted AA.
For Faster R-CNN, the overall SRs are 98.0% and 99.4% for
untargeted AA, 95.5% and 97.2% for scenario-targeted AA,
and 20.5% and 30.6% for targeted AA. For Apollo, since it
hardly detects any object of uninterest, scenario-targeted AA is
basically equal to HA or scenario-targeted CA. Therefore, we
conduct the untargeted and targeted AA for Apollo only, and
the overall SRs achieved are 67.0% and 73.0% for untargeted
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Table V: Effectiveness of Altering Attacks.
Black-box
Detector

Altering
Attack

Overall Attack Success Rate
BDD100K KITTI

YOLO
V3

Untargeted† 91.8% 98.7%

Scenario-targeted‡
82.2%
(Avg.)

OOI∗→ OOU∗∗ (82.1%),
OOU → OOI (75%)

96.9%
(Avg.)

OOI → OOU (96.8%),
OOU → OOI (100%)

Targeted§ 23.7%
(Avg.)

Top 5: bus → car (100%),
stop sign → car (100%),

truck → car (96.7%),
bus → truck (88.9%),

traffic light → car (77.8%)

19.8%
(Avg.)

Top 5: bus → car (100%),
truck → car (92.9%),

traffic light → car (84.2%),
bus → person (83.3%),
bus → truck (66.7%)

YOLO
V4

Untargeted 98.1% 97.2%

Scenario-targeted 97.9%
(Avg.)

OOI → OOU (97.8%),
OOU → OOI (100%)

95.6%
(Avg.)

OOI → OOU (95.5%),
OOU → OOI (97.3%)

Targeted 32.3%
(Avg.)

Top 5: bus → car (100%),
truck → car (97.8%),

car → person (95.6%),
person → car (90.1%),
car → truck (73.2%)

28.3%
(Avg.)

Top 5: bus → person (100%),
truck → car (96.5%),
bus → car (95.9%),

car → person (82.3%),
car → truck (77.9%),

YOLO
V5

Untargeted 99.6% 99.3%

Scenario-targeted 98.2%
(Avg.)

OOI → OOU (98.1%),
OOU → OOI (100%)

97.1%
(Avg.)

OOI → OOU (96.9%),
OOU → OOI (99.6%)

Targeted 34.1%
(Avg.)

Top 5: truck → car (97.8%),
bus → car (97.2%),

traffic light → car (90.3%),
person → car (89.2%),

person → truck (76.2%)

32.4%
(Avg.)

Top 5: bus → person (100%),
bus → car (100%),

truck → car (92.1%)
bus → truck (85.2%)
person → car (81.1%)

Untargeted 98.0% 99.4%

Faster
R-CNN

Scenario-targeted 95.5%
(Avg.)

OOI → OOU (95.3%),
OOU → OOI (100%)

97.2%
(Avg.)

OOI → OOU (96.9%),
OOU → OOI (100%)

Targeted 20.5%
(Avg.)

Top 5: truck → car (94.2%),
bus → car (92.9%),

person → car (75.9%)
stop sign → person (75.0%),

person → bus (70.1%)

30.6%
(Avg.)

Top 5: bus → person (100%),
car → person (97.6%),
truck → car (97.4%)

stop sign → person (95.7%),
truck → person (92.3%)

Apollo

Untargeted 67.0% 73.1%

Targeted 16.6%
(Avg.)

Top 5: truck → car (76.0%),
person → car (75.0%),

bus → car (68.4%),
bus → truck (26.3%),

person → truck (25.8%)

18.3%
(Avg.)

Top 5: truck → car (75.0%),
person → car (70.2%),

bus → car (66.7%),
truck → bus (25.0%),
bus → truck (25.0%)

† Untargeted: one to any ‡ Scenario-targeted: one to a set §Targeted: one to one
∗ OOI: object of interest ∗∗ OOU: object of uninterest

AA, and 16.6% and 18.3% for targeted AA. Among five
detectors, YOLO V5 and Faster R-CNN are most vulnerable
to AA. For BDD100K images, the object most likely to be
altered into is car when against five target detectors. For KITTI
images, it will be car when against YOLO V3/V4/V5 and
Apollo, and person when against Faster R-CNN.

Similar to targeted CA, targeted AA is difficult but both
untargeted AA and scenario-targeted AA achieve great perfor-
mance against these detectors. Specifically, scenario-targeted
AA can alter objects of interest into objects of uninterest
or vice verse with high success rates. The former is similar
to HA and can render autonomous vehicles unresponsive to
foreground people or cars. The latter is similar to CA and can
deceive autonomous vehicles into taking unnecessary actions
such as speed cuts or emergency brakes. Both two cases are
likely to cause severe traffic accidents.

3) Attack Robustness: In addition to the attack effective-
ness, we evaluate the attack robustness of PG attacks across
different scenes, weathers, times of day, and camera resolu-
tions, since autonomous driving systems usually take images

outdoors and thus may suffer from those impacts, if any.
For this set of experiments, we use the BDD100K dataset,

and classify the selected images according to their own anno-
tations. For the object detector, we use Faster R-CNN.

Scenes. For various scenes, the present objects and back-
grounds may have variations, e.g., the highway is likely
to have more cars while the residential street is likely to
have more people, which may have impacts on the attack
performance. Based on the actual annotations, the selected
BDD100K images can be classified into 3 typical scenes:
(1) City street (104 images), (2) Highway (61 images), and
(3) Residential street (35 images). To investigate the attack
robustness across different scenes, we evaluate the attack
performance of HA, CA, and AA against Faster R-CNN for
each scene, respectively.

The results shown in Fig. 7 demonstrate that the perfor-
mances of HA, CA, and AA show no obvious discrepancy
across various scenes. It is because PG attacks do not rely on
any physical objects or lights, which enables the applicability
of PG attacks in numerous autonomous driving scenes.
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Figure 7: Attack robustness on various scenes, weathers, time of day, and camera resolutions.

Weathers. Autonomous driving systems usually take im-
ages outdoors, which may be affected by weathers. To investi-
gate, we classify the selected BDD100K images based on their
weather conditions: (1) Clear (103 images), (2) Cloudy (64
images), and (3) Rainy (33 images). From the results shown in
Fig. 7, we can find that attacks towards images taken in various
weathers may show different performances but the differences
are slight. Since the dataset used to train the object detector
usually contains images of various weathers, we believe that
PG attacks are likely to be robust across various weathers.

Times of Day. Similar to weathers, images taken outdoors
may be affected by light conditions. To investigate, we classify
the selected BDD100K images based on the time they are
taken: (1) Daytime (103 images), (2) Dawn (64 images), and
(3) Night (33 images). From the results shown in Fig. 7, we
observe that the attack success rates of CA and AA are slightly
lower at night. This is because images taken at night have more
dark pixels in both objects and backgrounds. As a result, the
new pixels created by CA and AA are likely to be unitary in
color, which decreases the attack performances.

Camera Resolutions. Another factor that may affect the
attack performance is the camera resolution since autonomous
vehicles may use cameras of various resolutions to take
images. To study its impact, we re-sample the BDD100K
images from (1) 720p, to (2) 480p, and (3) 360p to simulate
cameras of different resolutions. The results shown in Fig. 7
demonstrate that HA, CA, and AA show similar performances
across different camera resolutions. This suggests that PG
attacks are likely to be applicable to object-detection systems
with various camera resolutions.

C. Real-world Attack Evaluation

In the real-world evaluation, we target a smartphone on a
moving vehicle and conduct PG attacks towards it inside the
vehicle via acoustic signals.

1) Setup: The target system, the attack devices, and the at-
tack methodology for the real-world evaluation are as follows:

Target System. We target a Samsung S20 smartphone
mounted on an Audi Q3 car that serves as its computer vision.
The target smartphone uses an accelerometer and a gyroscope
for motion feedback and compensates the images with both
OIS and EIS.

Attack Devices. We launch PG attacks towards the target
smartphone inside the car. The used attack devices include a
Rigol DG5072 Arbitrary Waveform Generator [35] for acous-
tic signal generation, a Fostex FT17H Horn Super Tweeter

Figure 8: Experimental setups. An ultrasonic speaker
beams designed acoustic signals to the target smartphone
in a moving vehicle to launch PG attacks.

Figure 9: An illustration of an original image, its simulated
and real-world adversarial blurry images.

speaker for acoustic signal beaming, an audio amplifier used
before the speaker for increasing the volume of the ultrasound,
an uninterrupted power supply used as the main power source,
and a DC power supply used as the power source of the audio
amplifier, as shown in Fig. 8. We set up these devices inside
the car and place the speaker towards the target smartphone at
a distance of around 10 cm and a power of 8-10 W to launch
PG attacks.

Attack Methodology. During the experiments, we drive the
vehicle around in the city with an average speed of 20-30 km/h
(for safety reasons) and launch three types of PG attacks (i.e.,
hiding, creating, altering) at four representative scenes: (1)
city lane, (2) city crossroad, (3) tunnel, and (4) campus road.
In each attack, we first take a clear image of the scene and
generate optimized attack parameters with the remote server.
Then, we induce the desired sensor outputs by emitting the
acoustic signals derived by optimized attack parameters. Once
the acoustic signals become stable, a 5-second video (amounts
to 150 images) is recorded with the victim smartphone for
each attack. In total, we collect 12 videos (1800 images) for
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Table VI: Results of real-world attacks.

Attacks
Scenes

City Lane City Crossroad Tunnel Campus Road
Goal SR Goal SR Goal SR Goal SR

Hiding hide a “person” 98.1% hide a “car” 100% hide a “car” 100% hide a “car” 95.2%
Creating create a “truck” 17.1% create a “bus” 75.7% create a “truck” 43.9% create a “person” 37.9%

Altering alter a “car”
into a “bus” 81.4% alter a “car”

into a “boat” 54.4% alter a “traffic light”
into a “person” 15.0% alter a “car”

into a “person” 21.7%

the real-world evaluation, which are fed into the Faster R-CNN
object detector for performance evaluation.

2) Attack Effectiveness: An illustration of a clear image
and its simulated and real-world adversarial blurry images
is shown in Fig. 9, from which we can observe that both
blurry images show similar patterns and both are recognized
mistakenly with a non-existing bench on the pavement. It
suggests that the simulated images are representative of the
ones created in the presence of real attacks, even in a moving
vehicle. To report the effectiveness of the real-world PG attacks
quantitatively, we calculate the SR as the number of images
that are successfully attacked over the total number of images
collected during each attack. The results shown in Tab. VI
demonstrate that all three types of PG attacks are feasible even
in a moving vehicle.

Impact of Ambient Audios. As analyzed in Sec. V-D,
audios or noises other than those from PG attacks have little
impact on the sensor outputs since they cannot force the sensor
into resonance and thus the caused motions are subtle. To
validate it experimentally, we measure sensor outputs in the
presence of PG attacks and when emitting ambient audios at
various strength against the target smartphone. The ambient
audios include (1) white noises, (2) people talking, and (3)
sine waves of various frequencies played by a speaker. From
the results shown in Fig. 10, we observe that even when played
at the equal volume, none of the ambient audios are able to
manipulate the sensor outputs while PG attacks can induce
false sensor outputs at a much larger scale. Thus, PG attacks
would be effective even in a noisy environment.

Impact of Attack Distances. The strengths of the modu-
lated acoustic signals received by the sensors depend on the
signal transmitting power and the distance between the speaker
and the target smartphone. To evaluate the trade-offs between
the power levels and attack ranges, we conduct experiments
to investigate the powers required to induce the same sensor
output for various speaker-smartphone distances. During the
experiments, our goal is to induce the gyroscope output to be
0.5 rad/s, and we vary the speaker-smartphone distance from
10 cm to 120 cm. The results shown in Fig. 11 demonstrate
that a larger attack power level is needed to induce the same
sensor output at a longer distance. Particularly, an attack power
of 10 W suffices to launch an attack from 1.1 m away, which
can be achieved by adversaries with modest budgets.

VII. DISCUSSION

A. Countermeasures
PG attacks exploit the vulnerabilities of MEMS inertial sen-

sors embedded in image stabilization system and mislead the
object detection algorithms to ultimately affect the decisions
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Figure 10: Compared with ambient audios, PG attacks
demonstrate significant sensor output manipulation capa-
bilities.
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Figure 11: A larger attack power level is needed to induce
the same sensor output at a longer distance.

of systems such as autonomous vehicles. In this section, we
provide several potential defense mechanisms by increasing
the difficulty of launching our attacks.

MEMS Inertial Sensors Safeguarding. PG attacks employ
MEMS inertial sensors’ vulnerabilities to acoustic injection
attacks as the attack entrances, which are enabled by two
attack surfaces: (1) susceptibility of the micro inertial sensing
structure to resonant acoustic signals, and (2) incapability of
signal processing/ conditioning circuits to handle out-of-band
analog signals properly. For the former, acoustic isolation can
be employed by surrounding sensors with microfibrous metal-
lic fabric [39] or MEMS fabricated acoustic metamaterial [54].
For the latter, a secure low-pass filter can be designed to
eliminate out-of-band analog signals, which suppresses the
adversary’s capability of controlling sensor outputs via signal
aliasing [43]. In addition, a microphone can be employed to
detect acoustic injection attacks and alert the system to the
possible existence of our attacks.

Image Stabilization Techniques. Another exploited vulner-
ability is that image stabilization techniques conduct motion
compensation based on unreliable inertial sensor readings.
We envision it can be mitigated by adding an additional
digital image stabilization that de-blurs images with the pixel
information only after the existing one, which serves as a
second barrier to blur images and thus our attacks.

Object Detection Algorithms. From the aspect of object
detection algorithms, possible defense mechanisms include:
(1) modifying the input images to disturb or even remove
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adversarial blur patterns via a guided de-noiser such as [16],
[30], [56], which may mitigate the threats but affect the
detection efficiency and accuracy, and (2) improving detection
models by raising the detection criterion or incorporating
adversarial training, which may increase the difficulty of our
attacks but impair models’ generalization abilities.

Sensor Fusion Techniques. Another complementary de-
fense approach is to exploit sensor fusion for decision making.
Autonomous vehicles can employ multiple types of sensors,
e.g., LiDARs, radars combined with cameras to perceive the
environment. It can increase the attack overhead in terms of
cost and time by requiring the adversary to target multiple
sensors simultaneously.

B. Limitation
PG attacks still have the following limitations at present.

First, as the first attempt, even though we successfully launch
attack signals towards smartphone cameras, we have not
conducted end-to-end attacks towards on-board cameras on
real autonomous vehicles. Second, in the current simulation
model, we assume the image stabilization hardware conducts
motion compensation ideally with a motion equivalent but
reserve to the camera motion. However, in practice the image
stabilization algorithms can be more complicated. Incorporat-
ing a more realistic image stabilization model may help further
improve the attack effectiveness. Third, PG attacks mainly
focus on disturbing object detection results on a single image
at present though the real-world experiments have demon-
strated the possibility of continuous attacks. However, a more
effective continuous attack requires further investigations and
methodology improvements. We designate the aforementioned
issues as our future work.

VIII. RELATED WORK

Adversarial Attacks against Computer Vision Systems.
The vulnerabilities of computer vision systems have been
actively investigated with the recent rise of face recognition,
autonomous vehicles and surveillance systems. Existing at-
tacks can be classified into two categories based on the targeted
component: (1) attacks on the camera hardware, and (2) attacks
on the object detector or classifier. Attacks in the first category
aim to make a camera capture malicious images that may
deceive both human eyes and classifiers. For example, strong
lights can blind a camera and cause denial-of-service [29],
[44], [50], and a fake road sign projected onto a wall may
be recognized as a real one [27]. Attacks in the second
category target at compromising object classifiers or detectors
via adversarial images, which can deceive computer vision
without being noticed by humans. Earlier work in this field
mainly focused on generating adversarial images in the digital
domain [42], [25], [7], [24], [40], e.g., by adding optimized
noises directly to the images. However, digital attacks may
not be practical when the target is a real-world computer
vision system such as autonomous vehicles, which requires
the attacker to inject adversarial noises via a camera from the
physical world. Recent studies have demonstrated the feasibil-
ity of physical adversarial attacks, e.g., by attaching physical

stickers or patterns to the object of interest [12], [38], [57],
[36] or on the camera lenses [21], or by projecting light to the
object of interest [59] or the camera [22]. Most of the existing
attacks require an adversary to either modify an object’s visual
appearance or project visible lights, which may be noticed by
alert users. In this work, we launch physical adversarial attacks
against object detection via acoustic injection on the image
stabilization system, which at ultrasonic frequencies can be
totally imperceptible to users.

Acoustic Injection Attacks against Inertial Sensors. A
wide range of control systems depend on the timely feedback
of MEMS inertial sensors to make critical decisions [45],
which however can be threatened by acoustic injection attacks
at resonant frequencies. Son et al. [37] first presented acoustic
attacks on MEMS gyroscopes, which can cause denial-of-
service of the sensor and make a drone crash. Trippel et
al. [43] proposed output biasing and output control attacks
that can achieve elaborate control over the output of MEMS
accelerometers using modulated sounds. Wang et al. [48]
developed a sonic gun and demonstrated the impact of acoustic
attacks on various smart devices such as virtual reality devices,
drones, and self-balancing vehicles. Tu et al. [45] devised
side-swing and switching attacks to manipulate the output of
MEMS gyroscopes and accelerometers. Our work is inspired
by the aforementioned studies. We use acoustic signals to
control the output of inertial sensors, which will provide a
false feedback to the image stabilization system and induce
adversarial blur patterns in the captured images that can
deceive the object detectors.

IX. CONCLUSION

Our paper identifies a new class of system-level vulnera-
bilities resulting from the combination of the emergent image
stabilization hardware susceptible to acoustic manipulation and
the object detection algorithms of machine learning subject
to adversarial examples. Our Poltergeist attacks exploit
such vulnerabilities to hide, create, or alter object detection
results. Evaluation results demonstrate the effectiveness of
Poltergeist attacks against four academic object detectors
YOLO V3/V4/V5 and Fast R-CNN, and one commercial
detector Apollo. While it’s clear that there exist pathways to
cause computer vision systems to fail with acoustic injection,
it’s not clear what products today are at risk. Rather than
focus on today’s nascent autonomous vehicle technology, we
model the limits in simulation to understand how to better
prevent future yet unimagined autonomous vehicles from
being susceptible to acoustic attacks on image stabilization
systems.
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APPENDIX

A. Pixel Motions Caused by CCMs in the x-axis, y-axis and
z-axis DOFs

The x-axis and y-axis DOFs. CCMs in the x-axis or the
y-axis DOF give linear pixel motions in the same DOF but in
the opposite direction. Take the y-axis for an instance. When
taking a photo towards an object such as the traffic light shown
in Fig. 12(a), the y-axis acceleration − ~ay introduces a camera
displacement of

OO′ = FF ′ = ~Ly = −1

2
~ayT

2 (9)

during the camera exposure time T , where O and O′ are
the original and moved camera centers, and F and F ′ are
the original and moved camera focuses, respectively. For an
arbitrary pixel C in the image, the camera displacement ~Ly
introduces a relative pixel displacement of CC ′−FF ′. Based
on the Optical Imaging Theory [17], we have

OO′ // FF ′ // CC′ (10)

1

f
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1
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Figure 12: Illustrations of CCMs in the y-axis and z-axis
DOFs.

where f is the camera focal length, u is the object distance,
and v is the image distance. As a result, we have

4AFF ′ 4ACC′ (12)

FF ′

CC′
=
AF

AC
=
f

v
(13)

Then, CC ′ − FF ′ can be calculated as

CC′ − FF ′ = (
v

f
− 1)FF ′ =

1
u
f
− 1

FF ′ (14)

Since the object distance is usually much larger than the focal
length, i.e., u� f , we can assume that CC ′ − FF ′ ≈ f

u
~Ly .

As the formed image is reverse to the scene (camera), the
camera displacement ~Ly in fact gives rise to a pixel motion of
− fu ~Ly for every pixel in the output photo. CCMs motions in
the x-axis DOF obey the same rule. As a result, for a CCM in
the x-axis and y-axis DOFs with accelerations of {−~ax,−~ay},
we have a pixel motion of { f2u~axT

2, f2u~ayT
2}.

The z-axis DOF. CCMs in the z-axis DOF give pixel
motions backwards or towards the image center [58]. As
shown in Fig. 12(b), the z-axis acceleration −~vz introduces
a camera displacement of

OO′ = FF ′ = ~Lz = −1

2
~azT

2 (15)

which results in a changed image distance (from OI to O′I ′),
and pixel motions towards the image center (e.g., from C to
C ′). For each pixel in the image, the pixel motion caused by
CCMs in the z-axis DOF depends on the camera displacement
~Lz and its distance to the image center I [16]. For an arbitrary
pixel C, its pixel displacement can be given as

I ′C′ − IC = (
I ′C′

IC
− 1)IC (16)

Since 4F ′I ′C ′ 4FIC and 1
f = 1

u + 1
v , we have

I ′C′

IC
− 1 =

F ′I ′

FI
− 1 =

v′ − f
v − f − 1 =

u− u′

u− f (17)

Since u− u′ = ~Lz and u� f , we can assume I ′C ′ − IC ≈
~Lz

u IC. Thus, a CCM in the z-axis DOF with an acceleration
of −~az in fact gives rise to a pixel motion of ~azT

2

2u ro towards
the image center, where ro refers to the pixel distance to the
image center.
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B. Illustrations of Linear, Radial, Rotational, and Heterogeneous Motion Blur

(a) Linear motion blur caused by
pixel motions in the x-axis and y-axis
DOFs (~Lxy=15 pixels, α = 45◦).

(b) Radial motion blur caused by
pixel motions in the z-axis DOF (p =
0.1).

(c) Rotational motion blur caused by
pixel motions in the roll DOF (C=
image center, β = 3◦).

(d) Heterogeneous motion blur
caused by pixel motions in (a)-(c).

Figure 13: Illustrations of linear (a), radial (b), rotational (c), and heterogeneous (d) motion blur.

C. Illustrations of Hiding, Creation, and Alteration Attacks

(a) The truck in the clear image (left) is hidden after blurring (right). (b) The person and bicycle in the clear image (left) is hidden after blurring
(right).

(c) A person is created with a high confidence score after blurring. (d) A car is created with slight blur.

(e) Two buses in the clear image (left) are altered into trucks after blurring
(right).

(f) The person in the clear image (left) is altered into a fire hydrant after
blurring (right).

Figure 14: Illustrations of hiding (a-b), creation (c-d), and alteration (e-f) attacks on BDD100K (left) and KITTI (right)
images.
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