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Abstract—Voice assistants (VAs) such as Siri and Google Now have become an increasingly popular human-machine interaction
method and have made various systems voice controllable. Prior work on attacking voice assistants shows that the hidden voice
commands that are incomprehensible to people can control the VAs. Hidden voice commands, though ‘hidden’, are nonetheless
audible. In this work, we design a completely inaudible attack, DolphinAttack, that modulates voice commands on ultrasonic
carriers to achieve inaudibility. By leveraging the nonlinearity of the microphone circuits, the modulated low-frequency audio commands
can be successfully demodulated, recovered, and more importantly interpreted by the voice assistants. We validate DolphinAttack
on popular voice assistants, including Siri, Google Now, S Voice, HiVoice, Cortana, Alexa, etc. By injecting a sequence of inaudible
voice commands, we show a few proof-of-concept attacks, which include activating Siri to initiate a FaceTime call on iPhone, activating
Google Now to turn on the airplane mode, and even manipulating the navigation system in an Audi automobile. We propose hardware
and software defense solutions. We validate that it is feasible to detect DolphinAttack by classifying the audios using supported
vector machine (SVM), and suggest to re-design voice assistants to be resilient to inaudible voice command attacks.

Index Terms—Inaudible Voice Commands, Voice Assistants, Speech Recognition, Microphones, Security Analysis, Defense.
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1 INTRODUCTION

The recent technology advances in speech recognition have
brought us closer to full-fledged artificial intelligent systems
that can interact with human at the speed of interpersonal
communication. Already, we have witnessed popular hu-
manized “voice assistants” (VAs) on a variety of systems:
Apple Siri [1] and Google Now [2] on smartphones that
allow users to initiate phone calls by voice, Alexa [3] on
Amazon Echoes that enables users to place purchase orders,
AI-powered voice assistant on Mercedes [4] that allows the
driver to alter in-car settings handsfree. With the emerging
of these voice assistants, it is important to understand how
the voice assistants behave under intentional attacks.

Many security issues of voice assistants arise from the
difference between how human and machines perceive voice.
For voice assistants, the microphone hardware serves as the
“ear” that transforms acoustic waves to electrical signals,
and the speech recognition software acts as the “brain” that
translates the signals into semantic information. Despite
their decent functionality, the imperfect nature of hard-
ware and software can open up chances for signals that
are unusual in interpersonal communication to be accepted
and correctly interpreted by voice assistants. This, however,
enables sneaky attacks.

Prior studies [5], [6] focusing on the speech recogni-
tion software have shown that obfuscated voice commands
which are incomprehensible to human can be understood
by voice assistants. Such attacks, though “hidden”, are
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nonetheless audible and remain conspicuous. This paper
analyzes the security of voice assistants from a hardware
perspective, and aims at examining the feasibility of stealth-
ier attacks that are otherwise impossible by manipulating
the software. We are driven by the following key questions:
Can voice commands be inaudible to human while still being
perceived and intelligible to voice assistants? Can injecting a
sequence of inaudible voice commands lead to unnoticed security
breaches to the entire system? To what extent can adversaries
utilize the gap of human-machine difference? To answer these
questions, we designed DolphinAttack, an approach to
inject inaudible voice commands at voice assistants by ex-
ploiting the ultrasound channel (i.e., f > 20 kHz) and the
vulnerability of the underlying audio hardware.

Inaudible voice commands may appear to be unfeasible
with the following doubts. (a) How can inaudible sounds be
audible to devices? The upper bound frequency of human
hearing is 20 kHz. Thus, most audio-capable devices (e.g.,
phones) adopt audio sample rates lower than 48 kHz, and
apply low-pass filters to eliminate signals above 20 kHz [7].
Previous work [6] considers it impossible to receive voices
above 20 kHz. (b) How can inaudible sounds be intelligible
to voice assistants? Even if the ultrasound is received and
correctly sampled by hardware, voice assistants will not
recognize signals that do not match human tonal features,
and are therefore unable to interpret commands. (c) How can
inaudible sounds be generated in a sneaky way? Comparing with
audible sounds, the generation of ultrasounds requires ded-
icated hardware and more transmitting power due to higher
attenuation. Any attacks that are short-range or depend on
equipment of significant size will be unpractical. We solved
all these problems, and we show that the DolphinAttack
voice commands, though totally imperceptible to human,
can be received by the audio hardware of various de-
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vices, and correctly interpreted by voice assistants. We vali-
dated DolphinAttack on major voice assistants, including
Siri, Google Now, Alexa, Samsung S Voice [8], Huawei
HiVoice [9], Cortana [10], etc.

Furthermore, we characterize the security consequences
by asking to what extent a sequence of inaudible voice
commands can compromise the security of the system
hosting voice assistants. We have tested DolphinAttack
on 25 models of systems including Apple iPhone, Google
Nexus, Amazon Echo, vehicles, etc. We believe the list
is by far not comprehensive. Nevertheless, it serves as a
wake-up call to reconsider what functionality and levels of
human interaction shall be supported in voice assistants. To
illustrate, we show that DolphinAttack can achieve the
following sneaky attacks purely by a sequence of inaudible
voice commands:

1) Visiting a malicious website. DolphinAttack voice com-
mands can trick the device to open a malicious webpage,
which can launch a drive-by-download attack or exploit
a device with 0-day vulnerabilities.

2) Spying. An adversary can let the victim device start
outgoing video/phone calls, therefore accessing the vi-
sual/acoustic surroundings of the device.

3) Injecting fake information. An adversary may make the
victim device send fake messages or emails, add fake
online posts, insert fake events to a calendar, etc.

4) Denial of service. An adversary may turn on the airplane
mode, disconnecting all wireless communications.

5) Concealing attacks. The screen and voice feedback may
expose the attacks. The adversary may decrease the odds
by dimming the screen and lowering the volume.

DolphinAttack voice commands are made feasible
because of the widely existed hardware vulnerabilities
and challenge the common design assumption that ad-
versaries may at most try to manipulate a voice assistant
vocally and can be detected by an alert user. In addition,
DolphinAttack does not require adversaries to be phys-
ically close to the victim devices. Adversaries can inject
inaudible voice commands at nearly 20 m away with a
transmitter array or exploit remotely accessible commod-
ity speakers to attack devices nearby. To address these
widely existed security issues, we generalize the method
of DolphinAttack as a building block to study vulnerabil-
ities and propose both hardware and software solutions.

In summary, we list our contributions as follows.

• We present DolphinAttack that can inaudibly inject
voice commands at state-of-the-art voice assistants by
exploiting ultrasounds and the vulnerabilities of audio
hardware. We validate DolphinAttack on 12 popular
voice assistants (Siri, Google Now, Alexa, etc.) across 25
models of devices (smartphones, speakers, cars, etc.).

• We show that adversaries can achieve a series of highly
practical attacks by injecting a sequence of inaudible
voice commands with either portable, long-range, or re-
mote setups. Tested attacks include launching FaceTime
on iPhones, shopping on an Amazon Echo, manipulat-
ing the navigation system in an Audi automobile, etc.

• We suggest both hardware and software based defense
strategies to alleviate the attacks, and we provide sug-
gestions to enhance the security of voice assistants.
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Fig. 1: The architecture of a state-of-the-art VA that can take
voice commands as inputs and execute commands.

2 BACKGROUND AND THREAT MODEL

In this section, we introduce popular voice assistants, dis-
cuss their architecture with a focus on microphones, and
propose the threat model.

2.1 Voice Assistants
A typical voice assistant (VA) system consists of three main
sub-systems: voice capture, speech recognition, and command
execution, as illustrated in Fig. 1. The voice capture subsys-
tem records ambient voices, which are amplified, filtered,
and digitized, before being passed into the speech recogni-
tion subsystem. Then, the raw captured digital signals are
first pre-processed to remove frequencies that are beyond
the audible sound range and to discard signal segments
that contain sounds too weak to be identified. Next, the
processed signals enter the speech recognition system.

Typically, a speech recognition (SR) system works in two
phases: activation and recognition. During the activation
phase, the system cannot accept arbitrary voice inputs, but
it waits to be activated. To activate the system, a user has
to either say pre-defined wake words or press a special
button. For instance, Amazon echo takes “Alexa” as the
activation wake word. Apple Siri can be activated by press-
ing and holding the home button for about one second or
by “Hey Siri” if the “Allow Hey Siri” feature is enabled.
To recognize the wake words, the microphones continue
recording ambient sounds until a voice is collected. Then,
the systems will use either speaker-dependent or speaker-
independent speech recognition algorithm to recognize the
voice. For instance, the Amazon Echo exploits speaker-
independent algorithms and accepts “Alexa” spoken by any
one as long as the voice is clear and loud. In comparison,
Apple Siri is speaker dependent. Siri requires to be trained
by a user and only accepts “Hey Siri” from the same person.
Once activated, the SR system enters the recognition phase
and will typically use speaker-independent algorithms to
convert voices into texts, i.e., commands in our cases.

Note that a speaker-dependent SR is typically performed
locally and a speaker-independent SR is performed via a
cloud service [11]. To use the cloud service, the processed
signals are sent to the servers, which will extract features
(typically Mel-frequency cepstral coefficients [12], [13]) and
recognize commands via machine learning algorithms (e.g.,
the Hidden Markov Models or neural networks). Finally, the
commands are sent back.

Given a recognized command, the command execution
system will launch the corresponding application or execute
an operation. The acceptable commands and correspond-
ing actions are system dependent and defined beforehand.
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Popular voice assistants have been built on smartphones,
wearable devices, smart home devices, and automobiles.
Smartphones allow users to perform a wide range of opera-
tion via voice commands, such as dialing a phone number,
sending short messages, opening a webpage, setting the
phone to the airplane mode, etc. Modern automobiles accept
an elaborate set of voice commands to activate and control
a few in-car features, such as navigation, the entertainment
system, the environmental controls, and mobile phones. For
instance, if “Call 1234567890” is recognized, an automo-
bile or a smartphone may start dialing the phone number
1234567890.

Many security studies on voice assistants focus on at-
tacking either the speech recognition algorithms [5] or com-
mand execution environment (e.g., malware). This paper
aims at the voice capturing subsystem, which will be de-
tailed in the next subsection.

2.2 Microphone
A voice capture subsystem records audible sounds mainly
by a microphone, which is a transducer that converts air-
borne acoustic waves (i.e., sounds) to electrical signals. A
majority of microphones are condenser microphones, and
two types of condenser microphones are used on voice con-
trollable devices: electret condenser microphones (ECMs)
and microelectromechanical system (MEMS) microphones.
Due to the miniature package sizes, lower power con-
sumption and excellent temperature characteristics, MEMS
microphones dominate mobile devices, including smart-
phones and wearables. Nevertheless, ECMs and MEMS mi-
crophones work similarly. As shown in Fig. 2, condenser mi-
crophones are air-gapped capacitors that contain a movable
membrane and a fixed electrode (electret for ECMs) [14]. In
the presence of a sound wave, the air pressure caused by the
sound wave reaches the membrane, which flexes in response
to changes in air pressure, while the other electrode re-
mains stationary. The movement of the membrane creates a
change in the amount of capacitance between the membrane
and the fixed electrode. Since a nearly constant charge is
maintained on the capacitor, the capacitance changes will
produce an AC signal. In this way, air pressure is converted
into an electrical signal.

Designed to capture audible sounds, microphones, low-
pass filters (LPFs), and ADC in the voice capture subsystem
are all designed to suppress signals out of the frequency
range of audible sounds (i.e., 20 Hz to 20 kHz). According
to datasheets, the sensitivity spectrum of microphones is
between 20 Hz to 20 kHz. Ideally, even if a signal higher
than 20 kHz is recorded by a microphone, it will be removed
by the LPF. Finally, the sample rate of the ADC is typically
44.1 kHz, and the digitized signal’s frequency is limited
below 22 kHz according to the Nyquist Sampling Theorem.

2.3 Threat Model
The adversary’s goal is to inject voice commands into a
voice controllable device without the owners’ awareness,
and perform unauthorized actions. We assume that the
adversary owns equipment that transmits acoustic signals,
but she has no direct access to the targeted device and
cannot force the owner to perform any tasks.

Sound Wave
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Fig. 2: An illustration of the electret condenser microphone
(ECM) and MEMS microphone structure.
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Fig. 3: An illustration on the modulated tone traversing the
signal pathway of a voice capture device in terms of FFT.

No Target Device Access. We assume that an adver-
sary may target at any voice assistants of her choices, but
she has no direct access to the target devices. She cannot
physically touch them, alter the device settings, or install
malware. However, we assume that she is fully aware of the
characteristics of the target devices. Such knowledge can
be gained by acquiring and analyzing devices of the same
model beforehand.

No Owner Interaction. We assume that the target device
may be in the owner’s vicinity, but may not be in use and
draw no attention (e.g., on the other side of a desk, with
screen covered, or in a pocket). In addition, the device
may be unattended, which can happen when the owner
is temporarily away (e.g., leaving an Amazon Echo in a
room). Nevertheless, the adversaries cannot ask the owners
to perform any operations, such as pressing a button or
unlocking the device.

Inaudible. Since the goal of an adversary is to inject
voice commands without being detected, she will use the
sounds inaudible to human, i.e., ultrasounds (f > 20 kHz).
Note that we did not use near-ultrasonic sounds (18 kHz
< f < 20 kHz) because they are still audible to kids.

Attacking Equipment. We assume that an adversary
could acquire either professional ultrasonic speakers or
those designed for playing audible sounds. An attacking
speaker is assumed to be in the vicinity of the target devices.
For instance, the adversary may secretly exploit a remote
controllable speaker around the victim’s desk or home.
Alternatively, she may also carry a portable speaker while
walking by the victim.

3 FEASIBILITY ANALYSIS

The fundamental idea of DolphinAttack is (a) to modu-
late the low-frequency voice signal (i.e., baseband) on an
ultrasonic carrier before transmitting it over the air, and
(b) to demodulate the modulated voice signals with the
voice capture hardware at the receiver. Since we have no
control on the voice capture hardware, we have to craft the
modulated signals in such a way that it can be demodulated
to the baseband signal using the voice capture hardware as
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ECM MicrophoneECM Microphone

MEMS Microphone

Fig. 4: An illustration of the benchtop experimental setup
for investigating the feasibility of receiving ultrasounds
with ECM and MEMS microphones. This benchtop setup is
used for validating the feasibility of attacking various voice
assistants as well.

it is. Given that microphone modules always utilize LPF to
suppress undesired high-frequency signals, the demodula-
tion shall be accomplished prior to LPF.

Since the signal pathway of voice capture hardware
starts from a microphone, one or more amplifiers, LPF, to
ADC, the potential components for demodulation are mi-
crophones and amplifiers. We look into the principle of both
to accomplish DolphinAttack. Although electric compo-
nents such as amplifiers are designed to be linear, in reality
they exhibit nonlinearity. With this nonlinearity property,
the electric component is able to create new frequencies [15].
Although the nonlinearity of amplifier modules has been
reported and utilized, it remains unknown whether micro-
phones, including both the MEMS microphones and the
ECMs possess such a property.

To investigate, we first theoretically model the non-
linearity of a microphone module, and then validate the
nonlinearity effect on real microphone modules.

3.1 Nonlinearity Effect Modeling
A microphone converts mechanical sound waves into elec-
trical signals. Essentially, a microphone can be roughly
considered as a component with square-law non-linearity in
the input/output signal transfer characteristics. Amplifiers
are known to have nonlinearity, which can produce demod-
ulated signals in the low-frequency range [16]. In this paper,
we study the nonlinearity of microphones and we can model
it as the following. Let the input signal be sin(t), and the
output signal sout(t) be

sout(t) = Asin(t) +Bs2in(t) (1)

where A is the gain for the input signal and B is the gain
for the quadratic term s2in. A linear component takes a
sinusoidal input signals of frequency f and outputs a sinu-
soidal signal with the same frequency f . In comparison, the
nonlinearity of electronic devices can produce harmonics
and cross-products1, and enable the devices to generate new
frequencies, i.e., with a crafted input signal they can down-
convert the signal as well as recover the baseband signal.

Suppose the signal of a voice command is m(t). We
modulate the signal on an ultrasound carrier with central
frequency fc, and let the modulated signal be

sin(t) = m(t) cos(2πfct) + cos(2πfct) (2)

1. Harmonics are frequencies that are integer multiples of the fun-
damental frequency components, and cross-products are multiplicative
or conjunctive combinations of harmonics and fundamental frequency
components.

Fig. 5: Evaluation of the nonlinearity effect. The time and
frequency domain plots for the original signal, the output
signal of the MEMS microphone, and the output signal of
the ECM microphone. The presence of baseband signals at
2 kHz shows that nonlinearity can demodulate the signals.

That is, amplitude modulation is used. Without loss of
generality, let m(t) be a single tone, i.e., m(t) = cos(2πfmt).
After applying Eq. (2) to Eq. (1) and taking the Fourier
transform, we can confirm that the output signal contains
the intended baseband frequency fm together with the
fundamental frequency components of sin (i.e., fc − fm,
fc + fm, and fc), harmonics, and other cross products (i.e.,
2fm, 2(fc − fm), 2(fc + fm), 2fc, 2fc + fm, and 2fc − fm).
After a LPF, all high-frequency components will be removed
and the fm frequency component will remain, which com-
pletes the down-conversion, as shown in Fig. 3. Note that
other unfiltered frequencies (e.g., 2fm) can bring distortion.

3.2 Nonlinearity Effect Evaluation

Given the theoretical calculation of the nonlinearity effect
of the microphone module and its influence on the input
signal after modulation, in this section, we verify the non-
linearity effect on real microphones. We test both types of
microphones: ECM and MEMS microphones.

3.2.1 Experimental Setup
The experimental setup is shown in Fig. 4. We use an iPhone
SE smartphone to generate a 2 kHz single-tone signal, i.e.,
the baseband signal. The baseband signal is then inputted
to a vector signal generator [17], which modulates the
baseband signal onto an ultrasonic carrier. After amplified
by a power amplifier, the modulated signal is transmitted
by a high-quality full-band ultrasonic speaker [18].

On the receiver side, we test an ECM extracted from a
headset and an ADMP401 MEMS microphone [19]. As is
shown in Fig. 4, the ADMP401 microphone module contains
a preamplifier. To understand the characteristics of micro-
phones, we measure the signal output from the microphone
instead of from the preamplifier.

3.2.2 Results
We study the nonlinearity using two types of signals: single
tones and voices with multiple tones.

Single Tone. Fig. 5 shows the result when we use a
20 kHz carrier, which confirms that the nonlinearity of the
microphone manages to demodulate the baseband signals.
The top two figures show the original signal from the
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Fig. 6: The MFCC for three sound clips of “Hey”. From top
to bottom: the TTS generated voice, the recorded voice as the
TTS voice is played in audible sounds, the recorded voice as
the TTS voice is modulated to 25 kHz.

speaker in the time domain and the frequency domain,
whereby the carrier frequency (20 kHz) and an upper side
band as well as a lower sideband (20 ± 2 kHz) appear
nicely. The two figures in the second row show the output
signal from the MEMS microphone and the bottom ones are
from the ECM. Even though the signals were attenuated,
especially for the ECM, the baseband (2 kHz) in the fre-
quency domain for both microphones confirm the success
of demodulation. We note that the MEMS microphones
receive stronger signals at both 20 kHz and 2 kHz than
the ECMs, which is possibly because the miniature size of
MEMS microphones makes them more sensitive to sounds
of shorter wavelengths, i.e., ultrasounds. Note that the fre-
quency domain plots also include the harmonics higher than
20 kHz, and they will be filtered by the LPF and shall not
affect the speech recognition.

Voices. Even though we can demodulate a signal tone
successfully, voices are a mix of numerous tones at various
frequencies, and it is unknown whether a demodulated
voice signal remains similar to the original one. Thus, we
calculated the Mel-Frequency Cepstral Coefficients (MFCC),
one of the most widely used features of sounds, of three
sound clips of “Hey”: (a) the original voice generated by
a text-to-speech (TTS) engine, (b) the voice recorded by a
Samsung Galaxy S6 Edge as an iPhone 6 plus plays the
original TTS voice, and (c) the voice recorded by a Samsung
S6 Edge as the TTS voices are modulated and played by
the ultrasonic speaker Vifa. As Fig. 6 shows, the MFCC of
all three cases are similar. To quantify the similarity, we
calculate the Mel-Cepstral Distortion (MCD) between the
original one and the recorded ones, which is 3.1 for case (b)
and 7.6 for case (c). MCD quantifies the distortion between
two MFCCs, and the smaller the better. Typically, the two
voices are considered to be acceptable to voice recognition
systems if their MCD values are smaller than 8 [20], and
thus the result encourages us to carry out further study on
DolphinAttack against voice assistants.

4 ATTACK DESIGN

DolphinAttack utilizes inaudible voice injection to con-
trol VAs silently. Since attackers have little control of the
VAs, the key of a successful attack is to generate inaudible
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Fig. 7: Architecture of the transmitter modules. The trans-
mitter mainly includes the command generation modules
and the modulation module.

voice commands at the attacking transmitter. In particular,
DolphinAttack has to generate the baseband signals of
voice commands for both activation and recognition phases
of the VAs, modulate the baseband signals such that they
can be demodulated at the VAs efficiently, and design a
portable transmitter that can launch DolphinAttack any-
where. The basic building blocks of DolphinAttack are
shown in Fig. 7, and we discuss these details in the following
subsections. Without loss of generality, we use Siri as a case
study, and the technology can be applied to other voice
assistants (e.g., Google Now, Alexa) easily.

4.1 Voice Commands Generation
Siri works in two phases: activation and recognition. It
requires activation before accepting voice commands, and
thus we generate two types of voice commands: activation
commands and general control commands. To control a
VA, DolphinAttack has to generate activation commands
before injecting general control commands.

4.1.1 Activation Commands Generation
A successful activation command has to satisfy two re-
quirements: (a) containing the wake words “Hey Siri”, and
(b) toning to the specific voice of the user that was trained
for Siri. We design two methods to generate activation
commands for two scenarios respectively: (a) an attacker
cannot identify the owner of Siri (e.g., attacking random
users), and (b) an attacker can obtain a few recordings of
the owner’s voice.

(1) TTS-Based Brute Force. The recent advance in Text-
to-Speech (TTS) technology makes it easy to convert texts
to voices. The only challenge of generating activation com-
mands with TTS is how to match the timbre of TTS voice
with that of a human user. We observed that two users with
similar vocal tones can activate the other’s Siri. Thus, as
long as there is one TTS voice that is close enough to the
owner’s, it suffices to activate Siri. In DolphinAttack, we
prepare a set of activation commands in various tones and
timbres with the help of existing TTS systems (summarized
in Tab. 1), which include Selvy Speech, Baidu, Google, etc.
In total, we obtain 90 types of TTS voices.

(2) Concatenative Synthesis. When an attacker can
record a few recordings from the owner of the Siri which
do not include “Hey Siri”, we propose to synthesize a
desired voice command by searching for relevant phonemes
(i.e., HH, EY, S, IH, R) from other words in the available
recordings.
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TABLE 1: The list of TTS systems used for attacking the Siri
trained by the Google TTS [21], and the evaluation results
on activation and control commands.

TTS Systems Voice Type #
# of successful types

Call 12..90 Hey Siri

Selvy Speech [22] 4 4 2
Baidu [23] 1 1 0
Sestek [24] 7 7 2

NeoSpeech [25] 8 8 2
Innoetics [26] 12 12 7

Vocalware [27] 15 15 8
CereProc [28] 22 22 9
Acapela [29] 13 13 1

Fromtexttospeech [30] 7 7 4

4.1.2 General Control Commands Generation
General control commands can be any commands that
launch applications (e.g., “call 911”, “open google.com”)
or configure the devices (e.g., “turn on airplane mode”).
Unlike the activation commands, SR systems generally do
not authenticate the control commands. Thus, an attacker
can choose the text of any control commands and utilize
TTS systems to generate them.

4.1.3 Evaluation
We test both activation and control commands. Without
loss of generality, we generate both activation and control
commands with the TTS systems summarized in Tab. 1. In
particular, we prepare two voice commands: “Hey Siri” and
“Call 1234567890”. For activation, we use the voices from
the Google TTS system to train Siri, and the rest for testing.
We play the voice commands with an iPhone 6 Plus and
the benchtop devices in Fig. 4, and test on an iPhone 4S.
The results of both activation and recognition commands
are summarized in Tab. 1, which show that the control
commands from all of the TTS systems can be recognized
by the SR system, and 35 out of 89 types of activation
commands can activate Siri, resulting in a success rate of
39 percent. The results are similar when Siri is trained by a
human user.

4.2 Voice Commands Modulation

After generating the baseband voice commands, we need
to modulate them on ultrasonic carriers such that they are
inaudible. To leverage the nonlinearity of microphones, we
utilize amplitude modulation (AM).

4.2.1 Amplitude Modulation Parameters
In AM, the amplitude of the carrier wave varies in pro-
portion to the baseband signal, and amplitude modulation
produces a signal with its power concentrated at the carrier
frequency and two adjacent sidebands. In the following, we
describe how to select AM parameters in DolphinAttack.

(1) Depth. Modulation depth m is defined as m =M/A,
where A is the carrier amplitude, and M is the modulation
amplitude, i.e., M is the peak change in the amplitude
from its unmodulated value. For example, if m = 0.5, the
carrier amplitude varies by 50 percent above (and below)
its unmodulated level. Modulation depth is directly related

to the utilization of the nonlinearity effect of microphones,
and our experiments show that the modulation depth is
hardware dependent (detailed in Sec. 5).

(2) Carrier Frequency. The selection of the carrier fre-
quency depends on several factors: the frequency range
of ultrasounds, the bandwidth of the baseband signal, the
cut-off frequency of the low pass filter and the frequency
response of the microphone, as well as the frequency re-
sponse of the attacking speaker. The lowest frequency of the
modulated signal should be larger than 20 kHz to ensure
inaudibility. Let the frequency range of a voice command
be w, the carrier frequency fc has to satisfy the condition
fc − w > 20 kHz. For instance, given that the bandwidth
of the baseband is 6 kHz, the carrier frequency has to be
larger than 26 kHz to ensure that the lowest frequency is
larger than 20 kHz. One may consider using carriers with
frequencies right below 20 kHz, because sounds at these
frequencies are still inaudible to most people except kids.
However, such carriers will not be effective. This is because
when the carrier frequency and lower sideband are below
the cut-off frequency of the low-pass filter, they will not be
filtered. Therefore, the recovered voices are different from
the original signals, and the SR systems will fail to recognize
the commands.

Similar to many electronic devices, microphones and
speakers are frequency selective, e.g., the gains at different
frequencies vary. For efficiency, the carrier frequency shall
be the one that has the highest product of the gains at both
the speaker and the microphone. To explore, we measure the
frequency response of a few speakers and microphones, i.e.,
given the same stimulus, we measure the output magnitude
at various frequencies. The results show that the gains of
the microphones and speakers do not necessarily decrease
with the increase of frequencies, thus the effective carrier
frequencies may not be monotonous, and can be device-
dependent.

(3) Voice Selection. Various voices map to various
baseband frequency ranges. For example, a female voice
typically has a wider frequency band than what a male voice
has, which results in a larger probability of frequency leak-
age over audible frequency range, i.e., the lowest frequency
of the modulated signal may be smaller than 20 kHz. Thus,
if possible, a voice with a small bandwidth shall be selected
to create baseband voice signals.

4.3 Voice Commands Transmitter

We design two transmitters: (a) a powerful transmitter
that is driven by a dedicated signal generator (shown in
Fig. 4) and (b) a portable transmitter that is driven by a
smartphone (shown in Fig. 8). We utilize the first one to
validate and quantify the extent to which DolphinAttack
can accomplish various inaudible voice commands, and we
use the second one to validate the feasibility of a walk-
by attack. Both transmitters consist of three components: a
signal source, a modulator, and a speaker. The signal source
produces baseband signals of the original voice commands,
and outputs to the modulator, which modulates the voice
signal onto a carrier wave of frequency fc in forms of
amplitude modulation. Finally, the speaker transforms the
modulated signals into acoustic waves.
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Fig. 8: A portable transmitter implemented with a Samsung
Galaxy S6 edge+ smartphone, a low-cost amplifier and an
ultrasonic transducer. The total cost of the amplifier, the
ultrasonic transducer and the battery is less than $3.

4.3.1 The Powerful Transmitter with a Signal Generator
We utilize a smartphone as the signal source and the vector
signal generator described in Fig. 4 as the modulator. Note
that the signal generator has a sampling range of 300 MHz,
much larger than ultrasonic frequencies, and can modulate
signals with predefined parameters. The speaker of the
powerful transmitter is a wide-band dynamic ultrasonic
speaker named Vifa [18].

4.3.2 The Portable Transmitter with a Smartphone
The portable transmitter utilizes a smartphone to generate
the modulated signals. Since we found that the best carrier
frequencies for many devices are larger than 24 kHz as
is depicted in Tab. 3, a majority of smartphones cannot
accomplish the task. Most smartphones support at most a
48 kHz sample rate and can only transmit a modulated
narrow-band signal with the carrier frequency of at most
24 kHz. To build a portable transmitter that works for a
wide range of devices, we acquired a Samsung Galaxy S6
edge+, which supports a sample rate up to 192 kHz when
using external speakers. We adopt a narrow-band ultrasonic
transducer [31] as the speaker and power it with an am-
plifier as shown in Fig. 8. As such, the effective attacking
distance is extended.

5 FEASIBILITY EXPERIMENTS ACROSS VAS

We validate DolphinAttack experimentally on 12 popular
voice assistants and 25 models of devices (27 devices in
total), and seek answers to three questions: (a) Will the
attacks work against different voice assistants on various
operation systems and hardware platforms? (b) How do
various software and hardware affect the performance of
attacks? (c) What are the key parameters in crafting a suc-
cessful attack? This section describes the experiment design,
setup, and results in detail.

5.1 System Selection

We examine DolphinAttack on various state-of-the-art
voice assistants and off-the-shelf devices, which are cate-
gorized in Tab. 2 and listed in Tab. 3. The list does not
intend to be exhaustive, but rather provides a representative
set of voice assistants and devices that can be acquired for
experiments with our best effort.

TABLE 2: The list of voice commands used in the experiment
on the devices and systems in Tab. 3.

Attack Device/Voice Assistant Voice Command

Recognition

Smartphones & Wearable Call 1234567890
iPad FaceTime 1234567890
MacBook & Nexus 7 Open dolphinattack.com
Windows PC Turn on airplane mode
Smart speakers Open the back door
Vehicles Navigation *

Activation

Apple Siri Hey Siri
Google Now Ok Google
Samsung S Voice Hi Galaxy
Huawei HiVoice Hello Huawei *

Huawei HiAssistant Hello Xiaoyi *

Alexa Alexa
Cortana Hey Cortana
iFlyTek Dingdong Dingdong *

AliGenie Tmall Genie *

Banma Hello Banma *

* Spoken in Chinese due to the lack of language support on English.

Our approach in selecting the target systems is
twofold—software and hardware. First of all, we select
major voice assistants that are publicly available, e.g., Siri,
Google Now, Alexa, Cortana, etc. Unlike ordinary software,
voice assistants (especially proprietary ones) are highly
hardware and OS dependent. For example, Siri is limited
Apple products and Cortana runs exclusively on Windows
machines. Nevertheless, we select and experiment on the
hardware whichever the voice assistants are compatible
with. To explore the hardware influence on the attack perfor-
mance, we also examine the attacks on different hardware
models running the same voice assistant, e.g., Siri on various
generations of iPhones.

In summary, we select voice controllable devices and
voice assistants (shown in Tab. 3) that are popular on the
consumer market with active users and cover various ap-
plication areas as well as usage scenarios. They can be clas-
sified into four categories—personal devices (smartphones,
tablets, wearables), computers, smart home devices (speak-
ers), and vehicles.

5.2 Experiment Setup
We test DolphinAttack on each of the selected device and
voice assistant with the same experiment setup, and report
their behaviors under attack with three goals:
• Examining the feasibility of attacks.
• Quantifying the parameters in tuning a successful attack.
• Measuring the attack performance.

Equipment. Unless specified, all experiments utilize the
default experiment equipment—the powerful transmitter
shown in Fig. 4. Since the powerful transmitter is able to
transmit signals with a wide range of carriers (from 9 kHz
to 50 kHz), we use it for feasibility study. In comparison,
the portable transmitter utilizes narrow-band speakers, and
its transmission frequencies are limited by the available
narrow-band speakers. In our case, our portable transmitter
can transmit signals at the frequencies of 23 kHz, 25 kHz,
33 kHz, 40 kHz, and 48 kHz.

Setup. As shown in Fig. 4, we position a target device
on a table in front of the ultrasonic speaker at varying
distances, with the device microphone facing right toward
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TABLE 3: Experimented devices, VAs, and the results. The examined attacks include recognition (after the voice assistants
have been manually activated) and activation (when the voice assistants are not activated). The voice assistants are trained
with the voice of Google TTS, and the same voice is used in recognition and activation attacks. The modulation parameters
and maximum attack distances are measured in an office environment with a background noise of 55 dB SPL.

Type Manuf. Model OS/Version Voice Assistant
Attacks Modulation Parameters Max Dist. (cm)

Recog. Activ. fc (kHz) & [Prime fc] ‡ Depth Recog. Activ.

Sm
ar

tp
ho

ne
&

Ta
bl

et
&

W
ea

ra
bl

e

Apple iPhone 4s iOS 9.3.5 Siri
√ √

20–42 [27.9] ≥ 9% 175 110
Apple iPhone 5s iOS 10.0.2 Siri

√ √
24.1 26.2 27 29.3 [24.1] 100% 7.5 10

Apple iPhone SE iOS 10.3.1 Siri
√ √

22–28 33 [22.6] ≥ 47% 30 25
Chrome

√
N/A 22–26 28 [22.6] ≥ 37% 16 N/A

Apple iPhone SE † iOS 10.3.2 Siri
√ √

21–29 31 33 [22.4] ≥ 43% 21 24
Apple iPhone 6 Plus * iOS 10.3.1 Siri ×

√
— [24] — — 2

Apple iPhone 6 Plus *† iOS 11.2.1 Siri
√ √

24–26 [24.8] 100% 6 5
Apple iPhone 6s * iOS 10.2.1 Siri

√ √
26 [26] 100% 4 12

Apple iPhone 6s Plus * iOS 11.2.1 Siri
√ √

22 24–28 30–31 [25.7] 100% 7 8
Apple iPhone 7 Plus * iOS 10.3.1 Siri

√ √
21 24–29 [25.3] ≥ 50% 18 12

Apple iPhone X iOS 11.4 Siri
√ √

20–50 [24.8] ≥ 30% 56 95
LG Nexus 5X Android 7.1.1 Google Now

√ √
30.7 [30.7] 100% 6 11

Samsung Galaxy S6 edge Android 6.0.1 S Voice
√ √

20–38 [28.4] ≥ 17% 36 56
Samsung Galaxy S6 edge+ Android 6.0.1 S Voice

√ √
21–22 24–40 [28.0] ≥ 21% 30 35

Huawei Honor 7 Android 6.0 HiVoice
√ √

29–37 [29.5] ≥ 17% 13 14
Huawei P10 Plus * Android 7.0 HiVoice

√ √
20–25 28–30 33 [24.2] 100% 9 13

Huawei Mate 20 * Android 9.0 HiAssistant
√ √

20–35 [33.8] ≥ 50% 16 18
Apple iPad mini 4 iOS 10.2.1 Siri

√ √
22–40 [28.8] ≥ 25% 91 50

Asus Nexus 7 Android 6.0.1 Google Now
√ √

24–39 [24.1] ≥ 5% 88 87
Apple watch watchOS 3.1 Siri

√ √
20–37 [22.3] ≥ 5% 111 164

PC

Apple MacBook macOS Sierra Siri
√

N/A 20–22 24–25 27–37 39 [22.8] ≥ 76% 31 N/A
Lenovo ThinkPad T440p Windows 10 Cortana

√ √
23.4–29 [23.6] ≥ 35% 58 8

Sp
ea

ke
r Amazon Echo 5589 Alexa

√ √
20–21 23–31 33–34 [24] ≥ 20% 165 165

JD DingDong 2 3.1.2.169 iFlytek
√ √

28–31 [29.1] 100% 8 7
Alibaba Tmall Genie X1 1.4.2 AliGenie

√ √
20–25 [—] 100% 5 11

Ve
hi

cl
e Audi Q3 N/A N/A

√
N/A 21–23 [22] 100% 10 N/A

Tesla Model S 8.1 N/A × N/A — [—] — — N/A
Roewe RX5 YunOS 1.1.1 Banma

√ √
— [25] 100% 10 10

‡ Prime fc is the carrier wave frequency that exhibits highest baseband amplitude after demodulation. — No result
† Another device with the same model number.
* Experimented with the front/top microphone on the device.

the speaker. Both the device and the speaker are elevated
to the same horizontal level (e.g., 10 cm above the table) to
reduce mechanical coupling. All experiments except those
on vehicles are conducted in our laboratory with an average
background noise of 55 dB SPL (sound pressure level), and
we confirm that no interfering sound exists in the 20–50 kHz
frequency band. We transmit the inaudible voice commands
through the powerful transmitter and observe the results on
the device screen or from its vocal response.

Generally, there are multiple microphones installed on a
device in order to pick up voices from multiple directions.
It is a common case that all the microphones are used in
speech recognition. In our experiments, we specifically test
the one that shows the best demodulation effect.

Voice Commands. Two categories of voice commands
are prepared for two types of attacks, activation and recog-
nition, as listed in Tab. 2. For those systems supporting
voice activation, we train them with Google TTS and try
to activate them with inaudible wake word commands. To
examine whether the inaudible voice commands can be
correctly recognized, we prepare a set of commands to cover
different types of devices. We generate each attack com-
mand with Google TTS to avoid the influence of imperfect
voice synthesis.

Sound Pressure Level. Though the sound generated for
attacks are inaudible to human, we nonetheless measure the

sound pressure level (SPL) in decibels using a free field
measurement microphone [32]. The SPL of the ultrasound
is 125 dB when measured at 10 cm away from the speaker.

Attacks. In recognition attacks, the voice assistants are
manually activated beforehand. While in activation attacks,
physical interactions with the devices are not involved. The
attacks are only considered successful and the results are
only recorded when the recognized texts from the voice
assistants fully match with the attacking commands.

Modulation Parameters. We argue that the modulation
parameters may have an influence on the attack perfor-
mance. We consider two factors in amplitude modulation:
the carrier wave frequency fc and the modulation depth. To
quantify their influence, we place the devices 10 cm away
from the attacking speaker and measure three parameters:
(a) fc range—the range of carrier wave frequencies in which
recognition attacks are successful. (b) Prime fc—the carrier
wave frequency that exhibits the highest baseband2 am-
plitude after demodulation. (c) AM depth—the modulation
depth at the prime fc when recognition attacks are success-
ful.

5.3 Feasibility Results
Tab. 3 summarizes the experiment results. From Tab. 3, we
conclude that DolphinAttack works with nearly all of the

2. For simplicity, the baseband signal is a single tone at 400 Hz.
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examined voice assistants and devices. In particular, the
inaudible control commands can be correctly interpreted
by nearly all of the tested voice assistants, and the acti-
vation commands can activate all corresponding devices.
Nonetheless, the results do show that various modulation
parameters are required in order to accomplish the same
attacks on different voice assistants and devices. We discuss
as follows.

Hardware Dependence. DolphinAttack’s basic prin-
ciple of is to inject inaudible voice commands be-
fore digitization components. Therefore, the feasibility of
DolphinAttack depends heavily on the audio hardware
rather than the speech recognition systems. For example,
different models of devices from the same manufacturer
running the same voice assistant show great variance in
the attack success rate, the maximum attack distance, and
modulation parameters. This is caused by hardware vari-
ance (e.g., microphones, amplifiers, filters), which leads to
variation in the digitized audio despite the same SR system.

For those devices of the same model, they exhibit similar
attack parameters and results most of the cases (e.g., iPhone
SE), but show slight variance as well (e.g., iPhone 6 Plus).
Thus, it is feasible for an adversary to study the hardware
beforehand and predict the necessary attack parameters as
well as possible results on a similar device. Noticeably,
we also observed in our experiments that devices with
ECMs (the three vehicles) require more trials for a successful
attack, which is possibly because ECMs are less sensitive to
ultrasound.

SR System Influence. We find that various SR systems
may handle the same audios differently. We test the voice
search in Google Chrome running on an iPhone SE. The
results in Tab. 3 show that the fc range of Google Chrome
overlaps with the fc range in Siri experiment, which sug-
gests that our attacks are indeed hardware dependent.
However, the differences in fc, AM depth, and recognition
distances are resulted from the discrepancy of SR systems.

Recognition versus Activation. Various devices and SR
systems can react differently to recognition and activation
attacks in terms of the attack distance. For 13 devices, the
activation attacks are effective at a greater distance than
recognition attacks, while for the other 8 devices, the recog-
nition attacks can be achieved further. We argue that the
activation and recognition commands can show different
performance when they are combined for real-life attacks,
and the lowest bar determines the attack capability. We will
evaluate the overall success rate of the two steps in one go
in the next section.

Carrier Wave Frequency. fc is the dominant factor that
affects the attack success rate, and it also shows great
variance across devices. For some devices, the fc range
within which recognition attacks are successful can be as
wide as 20–50 kHz (e.g., iPhone X), or as narrow as a
few single frequency points (e.g., iPhone 5s). We attribute
this diversity to the difference of frequency response and
frequency selectivity for these microphones as well as the
nonlinearity of audio processing circuits.

For instance, the fc range of Nexus 7 is from 24 to
39 kHz, which can be explained from two aspects. The fc
is no higher than 39 kHz because the frequency response of
the Nexus 7 microphone is low, and a carrier higher than
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Fig. 9: Amplitude of the demodulated 400 Hz baseband
signal (1st harmonic) and its higher order harmonics on
Nexus 7, with varying carrier wave frequency and modu-
lation depth.

39 kHz is no longer efficient enough to inject inaudible
voice commands. The fc cannot be smaller than 24 kHz
because of the nonlinearity coefficients. Recall in Sec. 3.1 that
frequencies other than the baseband such as 2fm are also
produced but not filtered, which can distort the baseband
signals. We observe that the inaudible voice commands
become unacceptable to SR systems when the amplitude of
such frequencies are larger than the baseband. For instance,
given the baseband of a 400 Hz tone, we measure the
demodulated signal (i.e., the 400 Hz baseband) on a Nexus
7, and observe harmonics at 800 Hz (2nd harmonic), 1200 Hz
(3rd harmonic) and even higher. As shown in Fig. 9(a), when
the fc is less than 23 kHz, the 2nd and 3rd harmonics are
stronger than the 1st harmonic, which distort the baseband
signal greatly and make it hard for SR systems to recognize.
The Prime fc that leads to the best attack performance is the
frequency that exhibits both a high baseband signal and low
harmonics. On Nexus 7, it is 24.1 kHz.

Modulation Depth. Modulation depth affects the am-
plitude of demodulated baseband signal and its harmonics,
as shown in Fig. 9(b). As the modulation depth gradually
increases from 0 to 100 percent, the demodulated signals
become stronger, which in turn increase the SNR and the
attack success rate, with a few exceptions (e.g., when the
harmonics distort the baseband signal more than the cases
of a lower AM depth). We report the minimum depth for
successful recognition attacks on each device in Tab. 3.

Attack Distance. The attack distance is largely deter-
mined by the power of the transmitter. With the Vifa ultra-
sonic speaker in Fig. 4, the maximum distance that we can
achieve for both attacks is 165 cm on an Amazon Echo. We
need to point out that the attack distance can be increased
dramatically with more powerful transmitters. For example,
later in Sec. 7 we achieve an attack distance of 19.8 m with
a transmitter array while the attacks still remain inaudible.
Nevertheless, the distances we report in Tab. 3 serve as an
important reference for the comparison of attack feasibility
on various devices. For example, the iPhone 4s that can be
activated at 110 cm away is easier to attack than the iPhone
6 Plus that can only be activated at 2 cm away.

Attack Angle. Though unreported in Tab. 3, the an-
gle between the transmitter and microphone can affect
the attack performance greatly because microphones can-
not pick up sounds equally from all directions. Generally,
DolphinAttack works the best when attacking from a
straight-up angle. We failed in attacking a Tesla vehicle be-
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TABLE 4: The impact of background noises for sentence
recognition evaluated with an Apple watch. A total of 10
trials are performed and we count a successful recognition
when every word in the command is correctly recognized.

Scene SPL (dB)
Recognition Rates

Hey Siri Turn on airplane mode

Office 55–65 10/10 10/10
Cafe 65–75 10/10 8/10
Street 75–85 9/10 3/10

112 112.5 113 113.5 114 114.5
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Fig. 10: The impact of sound pressure levels on the word
and sentence recognition rates of a control command (over
10 trials), experimented on two smart devices.

cause the ECMs are placed sideways and can barely receive
ultrasounds. After dismantling the microphone unit near
the sunroof and exposing the microphones, we managed
to inject inaudible commands.

Efforts and Challenges. We encounter a few challenges
in conducting the above experiments. Apart from acquiring
the devices, measuring each parameter is time-consuming
and labor-intensive due to the lack of audio measurement
feedback interface. For example, to measure the Prime fc,
we analyze the demodulation results on various devices
using several audio spectrum analyzing software. For de-
vices not supporting installing spectrum software such as
Apple watch and Amazon Echo, we utilize the calling and
command log playback function, and measure the audio on
another relaying device.

6 IMPACT QUANTIFICATION

In this section, we evaluate the performance of
DolphinAttack in terms of background noises, sound
pressure levels, and attack distances using the powerful
transmitter shown in Fig. 4. In addition, we evaluate the
effectiveness of walk-by attacks with a portable transmitter
and remote attacks with traditional loudspeakers.

6.1 Impact of Background Noise
Speech recognition is known to be sensitive to background
noises and is recommended to be used in a quiet environ-
ment. Thus, we examine inaudible voice command injection
via DolphinAttack in three scenarios: in an office, in a
cafe, and on the street. To make the experiment repeatable,
we simulate the three scenarios by playing background
sounds at a chosen SPL and evaluate their impact on the
recognition rates. We select an Apple watch as the attack
target, and measure the background noise with a sound
meter.

From Tab. 4, we conclude that background noises have
a negative impact on the recognition of inaudible voice
commands as well. The recognition rates of both activation
command (“Hey Siri”) and control command (“Turn on
airplane mode”) decrease with the increase of ambient noise
levels. Noticeably, the activation command is recognized
more times than the control command as the noise level in-
creases. We assume this is because the activation command
is shorter and has been previously learned by the SR system.

6.2 Impact of Sound Pressure Level
For both audible and inaudible sounds, a higher SPL leads
to a better quality of recorded voices and thus a higher
recognition rate. This is because a higher SPL always means
a larger signal-to-noise ratio (SNR) for given noise levels. To
explore the impact of SPLs on DolphinAttack, we test a
control command (“Call 1234567890”) on an Apple watch
and a Galaxy S6 Edge smartphone. In all experiments, the
speaker is positioned 10 cm away from the target device,
and a microphone is placed next to the speaker to monitor
the SPL.

We quantify the impact of SPLs with two granulari-
ties: word recognition rate and sentence recognition rate. Word
recognition rate refers to the percentage of words that are
correctly interpreted in a command. For example, if the
command “Call 1234567890” is recognized as “Call 124567”,
the word recognition rate is 63.6 percent (7/11). Sentence
recognition rate is calculated as the number of trials with
100 percent word recognition rate over 10 trials.

Fig. 10 shows the impact of the SPLs on both types of
recognition rates. Not surprisingly, under the same SPL, the
word recognition rates are always higher than the sentence
recognition rates until both reach 100 percent. For the Apple
watch, both recognition rates become 100 percent once the
SPL is larger than 106.2 dB. In comparison, the minimum
SPL for the Galaxy S6 Edge to achieve a 100 percent recogni-
tion rate is 113.96 dB, which is higher than that of the Apple
watch. This is because the Apple watch outperforms the
Galaxy S6 Edge in terms of demodulating inaudible voice
commands.

6.3 Impact of Attack Distance
We quantify the recognition rates on two devices at various
distances with two activation commands (“Hey Siri” and
“Hi Galaxy”) and a control command (“Call 1234567890”)
and show the results in Fig. 11.

In general, the sentence recognition rates of the activa-
tion command are higher than that of the control command,
because the activation command contains less words than
the control command. The Apple watch can be activated
with a success rate of 100 percent from 100 cm away, and
the Galaxy S6 Edge can be activated with 100 percent from
25 cm. We assume the difference between the two devices
is because Apple watches are worn on the wrist and are
designed to accept voice commands from a longer distance
than a smartphone.

6.4 Evaluation of Attacks with a Portable Transmitter
In this subsection, we evaluate the effectiveness of
DolphinAttack with a portable transmitter.
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Fig. 11: The impact of attack distance on the sentence
recognition rates of activation and control commands over
10 trials, experimented on two smart devices.

TABLE 5: The results of attacking an Apple watch using a
Galaxy S6 Edge smartphone at 2 cm away.

fc (kHz) 20 21 22 23 24

Word recognition rate 80% 100% 15% 100% 0%
Sentence recognition rate 8/10 10/10 0/10 10/10 0/10

Setup. We first test the portable setup using the Samsung
smartphone only, and attack an Apple watch paired with
an iPhone 6 Plus. The attack voice command is “Turn on
airplane mode” and we perform 10 trials. We set fc to be
{20, 21, 22, 23, 24} kHz, respectively. The AM depth is 100
percent, and the sample rate is 192 kHz. The baseband signal
has a limited bandwidth of 3 kHz.

Results. As shown in Tab. 5, we successfully “turned on
airplane mode” on the Apple watch at the 23 kHz carrier
frequency with 100 percent word and sentence recognition
rates. Note that 20 kHz and 21 kHz are also successful. How-
ever, there are audible frequency leakages below 20 kHz
which sound like crickets. With the increase of fc, the Apple
watch fails to recognize the voice command because the
Samsung smartphone limits the sample rate on its internal
speaker.

To increase the attack distance, we extend the portable
setup with an off-the-shelf low-power audio amplifier mod-
ule and an ultrasonic transducer, as is shown in Fig. 8. With
the 3-watt amplifier module, the maximum attack distance
is increased to 27 cm. Note that the attack distance can be
further extended with professional transducers and more
powerful amplifiers.

6.5 Evaluation of Remote Attacks with Traditional
Speakers
An adversary can launch a remote attack utilizing tradi-
tional speakers in private or public areas. For example, an
adversary can upload an audio or video clip to a website
(e.g., YouTube) in which the inaudible voice commands
are embedded. When the audio or video is decoded by a
victim’s computer/smartphone and played by a traditional
speaker, the surrounding voice controllable devices such as
Google Home, Amazon Echo, and smartphones might be
controlled unconsciously. In extreme conditions, multiple
devices might be attacked at the same time.

6.5.1 Feasibility Experiments with Traditional Speakers
The feasibility of remote attacks relies on whether tradi-
tional speakers can play ultrasounds embedded in regular

TABLE 6: The sound pressure levels of four traditional
speakers at five carrier wave frequencies.

Speaker
SPL (dB) at five fc (kHz)

20 21 22 23 24

HiVi 84.2 86.0 85.5 89.9 88.8
JBL 75.9 71.5 61.9 51.5 30.2

Fostex 81.9 81.0 78.8 77.5 75.9
GT1188 78.8 86.0 81.0 80.0 81.0

audio or video files remotely. We argue that such require-
ments can be satisfied with the following observations.

• Sample rate. The sample rates of audio files and sound
cards determine the maximum frequency of the signals
that can be delivered to speakers, which is a half of
the sample rate. The Audio Engineering Society rec-
ommends 48 kHz sample rate for most audio appli-
cations [33]. Such a sample rate allows to embed ultra-
sonic frequencies up to 24 kHz in an audio file, which
is sufficient for attacks with low fc (e.g., 20–21 kHz).
In case of the speakers for high fidelity (HiFi) music,
higher sample rates, such as 96 kHz and 192 kHz, can
be used, and they support higher ultrasonic frequencies
and enable a larger range of fc for attacking various
devices. In fact, many websites, smartphones, music
players, and computer sound cards support audio sam-
ple rates up to 192 kHz [34], [35].

• Frequency response of speakers. Traditional loud-
speakers are designed to produce sounds within the
human hearing range (i.e., 20 Hz to 20 kHz). How-
ever, many speakers can deliver frequencies beyond
20 kHz, especially the high-quality speakers. To repro-
duce sounds balanced at all frequencies, a high-quality
speaker is normally a combination of several types of
speakers that are good at producing sounds in different
frequency ranges, e.g., woofer (40–500 Hz), mid-range
(250–2000 Hz), and tweeter (above 2000 Hz) speakers.
Most tweeters are capable to deliver frequencies higher
than 20 kHz, though not as strong as below 20 kHz.

Speakers and devices. We validate the feasibility of
remote attacks with four traditional speakers: a high-end
speaker from HiVi [36], a portable mini Bluetooth speaker
from JBL [37], and two tweeters [38], [39] that are used in
home and studio speakers. The target devices include an
Apple watch, an iPhone 4s, and an Amazon Echo.

Setup. The attack commands are “Hey Siri, call
1234567890” and “Alexa, open the back door”. We modulate
the commands on five fc and generate audio files in MAT-
LAB with 96 kHz sample rate and 16-bit depth. We connect
the speakers to a Samsung smartphone via the headphone
jack and play the audio file. The devices are placed 10 cm
away from the speakers with their microphones at the
straight angle. For each speaker-device pair at each fc,
we perform 10 trials and count the number of trials that
the attack commands activate the device and are correctly
recognized. The sound pressure levels of the speakers used
in the experiments are measured on the device side and
shown in Tab. 6.

Results. As shown in Tab. 7, the traditional speakers are
capable to emit inaudible voice commands and thus can be
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TABLE 7: The experiment results on the feasibility of remote
attacks. The recognition rates over a basis of 10 trials are
reported with regard to attacking three devices with four
traditional speakers at five carrier wave frequencies.

Speaker Device
Recognition rates at five fc (kHz)

20 21 22 23 24

HiVi
Apple watch 10/10 10/10 10/10 10/10 10/10

iPhone 4s 10/10 10/10 10/10 0/10 0/10
Amazon Echo 2/10 10/10 1/10 0/10 0/10

JBL
Apple watch 10/10 10/10 0/10 0/10 0/10

iPhone 4s 0/10 9/10 0/10 0/10 0/10
Amazon Echo 3/10 10/10 4/10 0/10 0/10

Fostex
Apple watch 10/10 10/10 10/10 10/10 10/10

iPhone 4s 8/10 10/10 9/10 6/10 5/10
Amazon Echo 6/10 5/10 5/10 3/10 0/10

GT1188
Apple watch 10/10 10/10 6/10 10/10 10/10

iPhone 4s 10/10 10/10 10/10 2/10 1/10
Amazon Echo 9/10 10/10 9/10 5/10 0/10

Average recognition rate 7.3/10 9.5/10 6.2/10 3.8/10 3.0/10

utilized for remote attacks. The highest average recognition
rate is 9.5 trials over 10 trials when fc is 21 kHz. We observe
that both the speakers’ capability of emitting ultrasound and
the devices’ capability of receiving ultrasound can affect
the recognition rates. For example, the JBL speaker yields
low recognition rates when fc is above 21 kHz because
its produced SPL is low, and the Apple watch is more
vulnerable than the other devices by being sensitive to all
tested frequencies. Nevertheless, it is feasible for an attacker
to achieve a successful remote attack by choosing a proper
fc and performing repeated trials.

We have validated the feasibility of remote attacks in
controlled conditions. Nest, we evaluate the reliability of re-
mote attacks with the factors reflected in real-life scenarios,
i.e., at variant distances, with random relative orientation
between the device and speaker, and under various levels
of background noises. Audio files with fc at 21 kHz are
used for the rest of evaluations.

6.5.2 Impact of Attack Distance
We attack the Apple watch and iPhone 4s with the HiVi
speaker and record the activation rates with the increase
of the distance between the device and the speaker. The
speaker is adjusted to its maximum volume. As shown in
Fig. 12(a), the recognition rates are nearly all above 8/10 for
both devices when the distance is within 1 meter, and drop
to 0 when the distance is above 1.2 m. The results suggest
that remote attacks are likely to succeed when the speaker
and device are physically close, e.g., on the same table.

6.5.3 Impact of Relative Orientation
In practice, a device can be randomly orientated with regard
to speakers. To understand the impact of the orientation,
we place the HiVi speaker at 24 angles around the Apple
watch and set the distance to 50 cm. The only microphone on
the watch is pointed at 90◦. The results shown in Fig. 12(b)
suggest that the attacks are successful in a wide range of
angles. The recognition rates are higher than 8/10 when the
speaker is in front of the microphone (0◦-180◦), and more
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Fig. 12: The recognition rates with regard to (a) the attack
distance between the HiVi speaker and two devices, and (b)
the relative orientation between the HiVi speaker and Apple
watch (the only microphone on the watch is pointed at 90◦).

TABLE 8: The recognition rates under six sound pressure
levels of white noise.

White noise SPL (dB) 40 50 60 70 72 75

Recognition rate 10/10 10/10 10/10 10/10 1/10 0/10

than 5/10 at some angles (235◦-285◦) even when the speaker
is behind the microphone, which is possibly caused by the
reflections of ultrasound (from the wall or tabletop).

6.5.4 Impact of Background Noise
A background noise can lower the recognition rates of both
human voice and inaudible voice commands. We attack the
Apple watch with the HiVi speaker from 30 cm away and
record the recognition rates under six levels of white noise
(measured on the device side) played by the JBL speaker.
As shown in Tab. 8, the recognition rates are 10/10 when
the noise is below 70 dB SPL, which suggests that remote
attacks can be effective even in a noisy environment, e.g., a
cafe.

7 LONG-RANGE ATTACKS AND INAUDIBILITY

For the aforementioned attacks we focus on the feasibility
and do not intentionally maximize the distance of attacks.
A motivated attacker may try to launch a long-range attack
locally that exceeds the distance we report in Tab. 3. In this
section, we investigate the feasibility of long-range attacks
by studying to what extent can a local attacker increase the
attack distance and whether there are fundamental limita-
tions on the attack performance.

7.1 Long-Range Attacks with a Transmitter Array
As the attack distance increases, the ultrasound carriers go
through higher atmospheric attenuation and the recovered
voice commands may not be strong enough for recognition.
According to the power-law equation of acoustic attenua-
tion, the pressure of sounds traveling a distance d is

P (d) = P0e
−α(ω)d (3)

where P0 is the pressure at the transmitter and α(ω) is the
attenuation coefficient dependent on the frequency ω. In
order to have the same P (d) as d increases, two parameters
can be optimized—a lower α(ω) or a higher P0.
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(a) A transmitter array (b) The long-range setup

Fig. 13: The transmitter array and experiment setup for the
long-range attacks.

Transmitter Array. To achieve a higher sound pressure
P0 at the transmitter, we build a transmitter array with
40 ultrasonic transducers in parallel and drive them with
a TPA3116D2-based power amplifier circuit, as shown in
Fig. 13. The total cost for the transmitter array and power
amplifier is $36. We choose 25 kHz as the center frequency of
the transducers for a low α(ω). Compared with other com-
mon transducer frequencies such as 40 kHz, ultrasounds at
25 kHz are less attenuated and can be received by most
devices as we tested in Tab. 3.

Results. Our transmitter array boosts the attack distance
dramatically. At a power of 1.5 W, the voice commands
modulated on ultrasounds can be correctly recognized by
the Siri on an iPhone SE at 10 m away (previously 0.3 m)
and on an iPhone X at 19.8 m away. Therefore, it is feasible
for an attacker to launch long-range attacks outside an open
window or across the street. Note that the attack commands
are completely inaudible to a person either close to the
transmitter array or the device being attacked. However, if
we keep increasing the transmission power above 1.5 W the
attack becomes audible. We look into this phenomenon and
elaborate our findings in the following.

7.2 On the Boundary of Inaudibility
We observed in our experiments that increasing the trans-
mission power beyond a threshold level could turn the
attacks audible. Studying the audibility of DolphinAttack
at high power levels is important because it determines
whether the inaudible attacks can remain hidden success-
fully. In the following, we experimentally investigate the
source of such audibility and discuss theoretical explana-
tions.

The Source of Audibility. The inaudible commands may
become audible during three stages of the signal chain: the
sound source (speakers), the transmission medium (air), and
the receiving system (human ears).

1) The sound source (speakers). The nonlinearity of ampli-
fiers and speakers may create audible byproducts that
are emitted alongside the inaudible commands [40].

2) The transmission medium (air). The transmission of ultra-
sounds in a nonlinear medium (e.g., the air) may create
audible sounds during the propagation [41].

3) The receiving system (human ears). Ultrasonic hearing
is a recognized auditory effect that allows human to
perceive ultrasounds as audible sounds [42].

Since the audible perception may be caused by each one
of the three stages, it is important that we quantify the
amount of audible perception each stage contributes such
that we pinpoint the dominant source of audibility. Since
it is difficult to objectively quantify the auditory perception
inside human ears and brains, we focus on quantifying the
first two sources, i.e., the nonlinearity of the sound source
and the transmission medium. The interesting question is
which of the speakers’ and the air’s nonlinearity dominates
the IMD and creates the most of the audible sounds. This
is important to understand, because two of them will create
two shapes of ranges within which the inaudible commands
become audible and lead to various levels of suspicion:
(1) the nonlinearity of the speakers will create an audible
sphere centered at the speakers, and (2) the one from the
air creates an audible range on the propagation path of the
ultrasounds. Thus, the audible range created by the air’s
nonlinearity is less likely to cause suspicion, and only when
a user is located on the line of sight between the speaker
and the target, can she hear it.

Effects of Nonlinear Acoustics. When sound waves
have sufficiently large amplitudes, their propagation in the air
can no longer be modeled by the traditional linearization
of fluid dynamics equations. Such a phenomenon has been
well studied as a branch of physics called Nonlinear Acous-
tics [41]. In the following we give an intuitive explanation
of nonlinear acoustics. A sound wave propagates through a
medium as localized pressure change. The increased local
pressure of the air increases its local temperature, which
on the other hand also increases the local speed of sound.
As a result, a sound wave travels faster during the higher
pressure phase of the oscillation than during the lower
pressure phase. This distorts the sound wave and affects
its frequency structure. Such an effect is minimal if the
sound has low amplitudes, but it turns unignorable if the
amplitude is high, especially for ultrasonic waves due to
their relatively high amplitude to wavelength ratio. Thus, in
the long-range attacks, the ultrasounds of high amplitudes
are distorted as they propagate and produce audible sounds
in the air due to the effect of nonlinear acoustics. The SPLs
of the audible sounds created by nonlinear acoustics can
exhibit two types of change:

1) Increase stage. The SPLs may increase with distance
first, because the distortion of ultrasounds (i.e., the
generation of audible sounds) is a cumulative process
with regard to the distance [43].

2) Decrease stage. The SPL decreases when the distance
is beyond a threshold because of the dissipation of
the wave energy (i.e., attenuation of ultrasounds) is
dominant.

According to Berktay’s solution [44] to the Westervelt
Equation [41], the pressure of the self-demodulated audible
sound is proportional to the square of the pressure at the
transmitter, which can be simplified as

Pd ∝ P 2
0 (4)

Therefore, as one increases the ultrasound pressure P0 at
the transmitter for a longer attack range d, audible sounds
are inevitably demodulated in the air and easily become
louder, making the inaudible voice commands audible. Un-
der the same principle, the acoustics community has built
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Fig. 14: The loudness of the 1 kHz sound at various distances
produced by a traditional loudspeaker and the transmitter
array at three power levels.

highly directional “Audio Spotlight” speakers [45], [46] that
can deliver audible sounds (e.g., music and speech) to a
restricted area. Nonlinear acoustics is also identified as a
potential source of the “strange metallic sounds” heard by
diplomats in Cuba [47].

Experimental Setup. To quantify the audibility from the
speaker and the air, we modulated a 1 kHz tone on 25 kHz
carriers and played the signals with our transmitter array
at three power levels—1.5 W, 3 W and 6 W. If nonlinearity
exists, a 1 kHz tone shall be heard. For comparison, we also
played a 1 kHz tone from a loudspeaker at 5 W. We received
the sounds with a measurement microphone [48] from 1 cm
to 500 cm away and measured the sound pressure levels of
signals at 1 kHz on a spectrum analyzer [49].

How to Measure Audible Sounds? Since the nonlin-
earity of microphones can turn ultrasounds into audible
sounds, what a microphone receives can be the combination
of existing audible sounds and the ones demodulated by the
microphone. To overcome the challenges and to alleviate the
influence of the nonlinearity of microphones, we utilized the
propagation characteristics of ultrasounds, i.e., ultrasounds
are highly directional. Thus, we can reduce the amount of
received ultrasounds (and the amount of audible sounds de-
modulated by the microphone) by placing the microphone
perpendicular to the sound transmission path.

Results. As a reference, we measured the SPL of the
audible sounds played at 5W over a traditional speaker and
observed it decreased with distance, as shown in Fig. 14.
In comparison, the SPLs of the audible sounds from the
ultrasonic transmitter array do not always monotonically
decrease with distance. They increase first as the non-
linearity accumulates with distance and decrease as the
propagation attenuation exceeds the effect of nonlinearity
accumulations. From ultrasound experiments, we observe
that both the speaker and the air exhibit nonlinearity and
produce audible sounds at 1 kHz, and the air’s nonlin-
earity is more dominant in producing the audible sounds,
especially when the ultrasounds are at high power levels.
Within 5 cm of the transmitter array, audible sounds with
their SPLs higher than 70 dB are detected, and the SPLs
decrease with distance, which suggests that the transmitter
array emits audible sounds similar to the sounds from a
traditional speaker. However, the SPLs start to increase
beyond 5 cm. They reach their maxima at around 50 cm
and start to decrease exponentially after 1 m. This confirms

with nonlinear acoustics and means that the audible sounds
are also created as the ultrasounds travel in the air. In
addition, in our experiments we heard sounds mainly in
a highly directional space in front of the transmitter array
rather than in a spherical space around it. Such an audible
perception with our ears is consistent with the microphone
measurements. In either case of the source of audibility,
increasing the power of ultrasounds led to louder audible
sounds.

Eliminating the Audibility. To eliminate the audibility,
an attacker needs to avoid the nonlinearity of the speakers
and the air. Although audible sounds from the speakers is
not evident in our experiments possibly due to our high-
quality amplifiers and transducers, a recent work [40] has
proposed a method to eliminate the audibility from speak-
ers by emitting narrow-band ultrasounds from multiple
speakers. However, regardless of whether the nonlinearity
of speakers is avoided, the nonlinear acoustics in the air
still exist during the propagation of ultrasounds and will
produce audible commands. We leave this challenge to
future work.

8 DEFENSES

In this section, we discuss the defense strategies to address
the aforementioned attacks from both the hardware and
software perspectives.

8.1 Hardware-Based Defense
We propose two hardware-based defense strategies: micro-
phone enhancement and baseband cancellation.

Microphone Enhancement. The root cause of inaudible
voice commands is that microphones can sense acoustic
sounds with a frequency higher than 20 kHz while an
ideal microphone should not. In practice, most MEMS mi-
crophones can receive signals above 20 kHz [50]. Thus, a
microphone shall be enhanced and designed to suppress
any acoustic signals whose frequencies are in the ultrasound
range.

Inaudible Voice Command Cancellation. Given the
legacy microphones, we can add a module prior to LPF to
detect DolphinAttack and cancel the demodulated voice
commands. In particular, we can detect the signals within
the ultrasound frequency range that exhibit AM modulation
characteristics, and demodulate the signals to obtain the
baseband. For instance, in the presence of inaudible voice
command injection, besides the demodulated baseband sig-
nals m(t), the recorded analog voice signals shall include
the original modulated signal: v(t) = Am(t) cos(2πfct) +
cos(2πfct), where A is the gain for the input signal m(t).
By down-converting v(t) to obtain Am(t) and adjusting
the amplitude, we can subtract the baseband signal. Note
that such a cancellation procedure will not affect the normal
operation of a microphone, since there will be no correlation
between the captured audible voice signals and noises in the
ultrasound range.

8.2 Software-Based Defense
Software-based defense looks into the unique features of
demodulated voice commands which are distinctive from
the genuine ones.
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Fig. 15: Original (top), recorded (middle) and recovered
(bottom) voice signals. The modulated voice command dif-
fers from both the original signal and the recorded one in
the frequency range between 500 and 1000 Hz.

We analyze a voice signal generated by the Google TTS
engine when it is a) in its original form, b) played and
recorded, and c) modulated onto and recovered from a
25 kHz carrier. As shown in Fig. 15, the recovered signal is
different from both the original signal and the recorded one
in the higher frequency band ranging from 500 to 1000 Hz.
Thus, we can detect DolphinAttack by analyzing the
signal from such a frequency range. In particular, a machine
learning based classifier shall detect it.

To validate the feasibility of detecting DolphinAttack,
we utilize supported vector machine (SVM) as the classifier,
and extract 15 features in the time and frequency domains
from audios. We generate 12 types of a voice command
(“Hey Siri”): 8 types from the NeoSpeech TTS engine and 4
types from the Selvy TTS engine. With each type, we obtain
two samples: one is recorded and the other is recovered.
In total, we have 24 samples. To train a SVM classifier, we
use 5 recorded audios as positive samples and 5 recovered
audios as negative samples. The rest 14 samples are used for
testing. The classifier can distinguish the recovered audios
from the recorded ones with 100 percent true positive rate
(7/7) and 100 percent true negative rate (7/7). The results
using a simple SVM classifier indicate that software-based
defense strategies can be used to detect DolphinAttack.

9 RELATED WORK

Security of Voice Controllable Systems. An increasing
amount of research effort has been devoted to the security
of voice controllable systems [5], [6], [11], [51], [52]. Kasmi et
al. [11] introduced a voice command injection attack against
modern smartphones by applying intentional electromag-
netic interference on headphone cables. Mukhopadhyay et
al. [51] demonstrated voice impersonation attacks on state-
of-the-art automated speaker verification algorithms. Diao
et al. [52] designed permission bypass attacks from a zero-
permission Android application through phone speakers.
Hidden voice commands [5] and Cocaine noodles [6] use
audible but mangled audio commands that cannot be easily
understood by human to attack speech recognition systems.
DolphinAttack is motivated by these studies, and it is
completely inaudible and imperceptible to human.

Security of Sensor-Equipped Devices. Commercial de-
vices (e.g., smartphones, wearables and tablets) equipped

with various sensors are gaining their popularity. Along
with the growing trend of ubiquitous mobile devices are
the security concerns. Many researchers focus on studying
possible attacks against sensors on smart devices [53], [54],
[55], [56], [57], [58]. Among which, sensor spoofing (the
injection of a malicious signal into a victim sensor) has
attracted much attention and is considered one of the most
critical threats to sensor-equipped devices [59]. Our work
focuses on microphones, which is considered as one type of
sensors.

Privacy Leakage Through Sensors. Michalevsky et
al. [60] managed to reveal the speaker information by
measuring acoustic signals with MEMS gyroscopes. Aviv
et al. [61] demonstrated that accelerometers can reveal user
taps and gesture-based input. Dey et al. [62] studied how
to fingerprint smartphones utilizing the imperfections of
on-board accelerometers, and the fingerprints can act as an
identifier to track the smartphone’s owner. Simon et al. [63]
utilized video cameras and microphones to infer PINs en-
tered on a number-only soft keyboard on a smartphone.
Li et al. [64] can verify the capture time and location of
the photos with the sun position estimated based on the
shadows in the photo and sensor readings of the cameras.
Sun et al. [65] presented a video-assisted keystroke inference
framework to infer a tablet user’s inputs from surreptitious
video recordings of the tablet motion. Backes et al. [66]
showed it is possible to recover what a dot matrix printer is
printing based on the printer’s acoustic noises. Similarly, we
study how to utilize microphone vulnerabilities for security
and privacy breaches.

Roy et al. [67] presented BackDoor, which constructs
an inaudible acoustic communication channel between two
speakers and a microphone over ultrasounds. In particular,
they utilize two speakers to transmit ultrasounds at two
frequencies. In comparison, we show it is possible to use one
speaker to inject inaudible commands to voice assistants,
causing various security and privacy issues.

Our initial work on this topic appeared in [68]. This
paper is an enhanced version with the following major
differences: a) We greatly escalated the security threat of
DolphinAttack by extending the attack distance from
1.7 m to 19.8 m with the long-range setup and by proposing
a more disrupting and easy-to-exploit remote attack that op-
portunistically utilizes a victim’s traditional speakers as the
transmitters. b) We thoroughly studied the audible effects
that happen when transmitting ultrasounds at high power
levels. c) We investigated two major factors that may affect
the attack result: distortion and type of microphone, and we
validated the generality of attacks on 10 more devices and 5
more types of voice assistants.

10 CONCLUSION

In this paper, we propose DolphinAttack, an inaudible
attack to voice assistants and voice controllable devices.
It modulates audible voice commands on ultrasonic car-
riers so that the command signals cannot be heard by
human, but can be perceived by nonlinear hardware. With
DolphinAttack, an adversary can attack major voice assis-
tants including Siri, Google Now, Alexa, and etc. To avoid
the abuse of DolphinAttack in reality, we propose two
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defense solutions from the aspects of both hardware and
software.
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