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ABSTRACT

Verifying the identity of voice inputs is important as voices are
increasingly used for sensitive operations. Traditional methods fo-
cus on differentiating individuals via the spectrographic features
of voices (e.g., voiceprint), yet cannot cope with spoofing attacks,
whereby a malicious attacker synthesizes the voice with almost
the same voiceprint of a victim or simply replays it. This paper
proposes CaField, a text-independent speaker verification method
to detect loudspeaker-based voice spoofing attacks with the goal of
achieving two seemingly conflicting requirements: usability and
security. The key insight of CaField is to construct “fieldprint”
with the acoustic biometrics embedded in sound fields, i.e., a physi-
cal field of acoustic energy created as the sound propagates over
the air, as analogous to “voiceprint”. We find that fieldprints can
be distinctive between speakers (either humans or loudspeakers),
and thus we may detect the speakers being used for spoofing at-
tacks from the authentic users. Our evaluation on a dataset of 20
people and 8 loudspeakers shows that by relying on two on-board
microphones to sample sound fields while users talk to the smart-
phones, CaField achieves a detection accuracy of 99.16% and an
equal error rate (EER) of 0.85% across multiple sessions and various
voice inputs. CaField supports low audio sample rates at 8 kHz
and is robust to various factors including phone displacement, user
posture, recording environment, etc.
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Figure 1: An illustration of utilizing sound fields to detect
loudspeaker-based spoofing attacks with a smartphone. An
attacker may use a loudspeaker to generate voices that have
almost the same voiceprint as the authentic user’s, but it is
difficult to replicate the user’s sound field in the space.
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1 INTRODUCTION

Voice inputs have enabled human to vocally instruct smart devices
to perform various operations, ranging from making phone calls,
posting locations [29], to logging in [59] or even telephone bank-
ing [33]. As these operations become increasingly privacy sensitive
or security critical, it is important to continuously authenticate
who speaks the voice inputs regardless of its content, i.e., text-
independent speaker verification. The existing speaker verification
mechanisms primarily focus on distinguishing individuals, and typ-
ically rely on voice biometrics (e.g., a voiceprint [36]) that is derived
from the spectrographic features of utterances. For instance, Siri [6]
extracts voiceprints from the wake-up words for owner authen-
tication. Nevertheless, with the help of voice manipulation tools,
an attacker can bypass such speaker verification by generating
the voice of a victim user via record-and-replay [4, 38, 67], speech
synthesis [5, 10, 23], or voice conversion [37, 57, 68], and playing
it via a loudspeaker. To cope with such loudspeaker-based spoof-
ing attacks [66], in this paper we propose a user-friendly spoofing
detection mechanism (hereafter CaField) that can continuously
authenticate a voice input. We design CaField to achieve the seem-
ingly conflicting requirements on both usability and security.



Table 1: Similar spoofing detection systems.

System _ Spurge of Text No E)_ctra Little qu.
Distinctiveness  Indep. Device Constraint
VoiceLive [71] Phoneme location X v X
VoiceGesture [70] Mouth motion X v X
WiVo [43] Mouth motion v X v
Chetty et al. [21] Mouth motion v v X
Shang et al. [52] Throat vibration X v X
VAuth [26] Body vibration 4 X v
Chen et al. [20] Magnetic field v v X
Shiota et al. [55, 56] Pop noise X v X
VoicePop [63] Pop noise X v X
2MA [12] Device ownership v/ X v
CaField (this work) Sound field v v v

e Usability. CaField should impose almost no extra user inter-
vention, and thus it requires text-independence, no extra device,
and little position constraints. That is, CaField continuously au-
thenticates users as they speak voice inputs; users do not have
to carry extra devices [12, 26, 43] other than a smartphone, or
being constrained to specific device positions, such as close to
the mouth [55, 56, 63, 70, 71], in touch with the throat [52], in
front of the face [21], or moving in particular ways [20].

e Security. CaField shall distinguish between an authentic user
and spoofing attackers, even if they generate a voice input that
has almost the same voiceprint; and the results should be consis-
tent across multiple sessions of speaker verification, regardless
of the content of the voices, the time of the day, etc.

Achieving security while satisfying all aforementioned require-
ments on usability is promising yet challenging. The usability re-
quires to record sounds by a single device with little position re-
strictions, which in turn limits the amount of information available
to distinguish between an authentic user and spoofing attackers,
especially when the spoofing voices are played by high-quality
loudspeakers. Prior work on detecting loudspeaker-based spoof-
ing attacks (as summarized in Tab. 1) shows that it is difficult to
achieve all usability requirements, despite that various types of
distinctiveness have been explored for security.

To tackle this problem, we utilize the unexplored acoustic charac-
teristics that are distinct between an authentic user and attackers
regardless of the speech content or device position. The key is to
understand the physical process of generating and recording voices
in sequential stages: voice production by the user, voice propaga-
tion in a medium, and voice receiving and processing at the device.
In the voice production stage, the physiological structures of a
person, i.e., the shape and size of the vocal cords and vocal tract,
determine his/her voice. During propagation, the human voice can
be affected by attenuation, ambient noises, diffraction, reverber-
ation, etc., before it is received by a microphone and processed
by a speaker verification system. The propagation stage has long
been overlooked for its contribution to voice biometrics except for
the “harmful” distortion it introduces. However, in this paper, we
discover that the voice propagation stage is also affected by physi-
ological features and produces distinctive biometric information,
which can be used to differentiate a user from loudspeakers and
even from other people. Since sounds propagate in an open space,
by nature this stage can be measured with little position constraints.

Thus, we may fulfill the requirements on the usability of CaField
with only one smartphone. Yet achieving text-independence is chal-
lenging.

To overcome these challenges, we derive the biometric infor-
mation that is produced during the voice propagation stage as the
“fieldprint”, analogous to “voiceprints”. A fieldprint is extracted
from a sound field, which is a physical field of acoustic energy
that is created as the sound propagates over the air. As illustrated
in Fig. 1, our key insight is that the sound field of a speaker (either
a human or a loudspeaker) is affected by its physical structure, e.g.,
physiological features of the mouth, head, and torso, or dimensions
of the mechanical components. Sound fields can be distinctive since
speakers may have different physical structures, especially between
human and loudspeakers. Thus, we may use a fieldprint to verify
the identity of a speaker and detect spoofing attacks without relying
on liveness information or distorted spoofing sounds.

Based on fieldprints, CaField! utilizes the on-board microphones
of a smartphone to detect spoofing attacks. In particular, CaField
allows the user to hold the smartphone in any position that he/she
is already comfortable with, including but not limited to: next to
the ear as making a phone call (the side position) and in front of
the chest when interacting with a voice assistant (the front posi-
tion). Our experiments show that users do not have to hold the
smartphone in exactly the same position across multiple sessions,
and CaField can tolerate modest variance. CaField is also fully
functional at low audio sample rates such as 8 kHz, which makes
it suitable for telephone-based applications of speaker verification.
To evaluate its effectiveness, we recruited 20 participants and re-
quested each of them to speak 100 voice commands of their choices
in two positions, i.e., in the side and front positions, and we im-
plemented spoofing attacks with 8 loudspeakers of various sizes
and qualities. CaField is able to accept authentic users and reject
spoofing attacks with an accuracy of 99.16% and an equal error
rate (EER) of 0.85%, and even distinguish a human participant from
others with an accuracy of 98.42% and an EER of 1.84%.

We summarize our major contributions as follows.

e We discover that sound fields can be used to differentiate be-
tween authentic users and spoofing attackers, and we design the
fieldprint to quantify such distinctions.

e We design CaField, a fieldprint-based spoofing detection sys-
tem that is applicable to text-independent speaker verification
without using extra devices and with little position constraints.

o We evaluate the performance of CaField based on 20 human
participants and 8 loudspeakers that generate 2000 authentic
commands and 16000 attempts of spoofing attacks. The results
show that CaField is highly effective in detecting loudspeaker-
based spoofing attacks.

2 BACKGROUND

In this section, we introduce the voice production mechanisms of
human and loudspeakers along with the basic concepts of sound
fields. To avoid ambiguity, in this paper we refer “speaker” to any
type of sound source and use “human (speakers)” and “loudspeakers”
respectively to specify biological and electrical sound sources.

!caField is short for “the Catcher in the (sound) Field”, which is inspired by J. D.
Salinger’s famous novel “The Catcher in the Rye”.
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Figure 2: A sectional view of a human vocal tract and a loud-
speaker, showing that they rely on distinct sound produc-
tion mechanisms.

2.1 Human Speakers

The production of human voice normally includes three stages: I)
the generation of an initial sound, II) the reshaping of the sound
that creates voice, and III) the emission of the voice. As shown
in Fig. 2(a), various organs are involved in the three stages, and
physiological differences of them between people lead to distinctive
human voices.

(I) Sound generation. The energy of voice comes from the air
expelled from the lungs. In talking, the air flow vibrates the vocal
cords in the larynx, which generate an initial sound at a fundamen-
tal frequency and its harmonics that are determined by the length
and density of the vocal cords. In whispering, the vocal cords do
not vibrate but are held close together, which produces a turbulent
flow of air that makes a broadband noise-like sound.

(IT) Sound reshaping. The initial sound is reshaped on the spec-
trum after going through the vocal tract (the oral or nasal cavities)
and becomes a meaningful voice. The vocal tract acts as a “res-
onator” that enhances or weakens the spectrum of the initial sound
at the resonant frequencies that are determined by the geometry
of the cavities. By moving organs including the jaw, tongue, teeth,
lips, soft palate, etc., a.k.a. the “articulators”, one can change the
geometry of the vocal tract and pronounce various phonemes?.

(IIT) Voice emission. Most of the human voices are radiated in the
air through the mouth and nose, and some are emitted by other
parts of the human body through bone conduction.

2.2 Loudspeakers

A loudspeaker is a device that converts electrical energies into
acoustic energies [9]. Its basic function is to respond to the in-
coming audio frequency electrical signals by performing physical
vibrations (e.g., of a diaphragm), which in turn radiate sound waves
corresponding to the electrical signals [58]. In a loudspeaker-based
spoofing attack, the electrical signals are provided by the attacker
with voice manipulation tools or simply via recording. We show an
example of loudspeaker among the numerous types of designs in
Fig. 2(b). The key observation here is that almost all loudspeakers

ZPhonemes are the smallest units of speech, which are each perceived to be a single
distinctive sound in a language. For example, there are 44 unique phonemes in the
English language, and a word is pronounced as a combination of phonemes.

produce the desired sounds in only one physical stage by directly
vibrating a diaphragm [8]. The sounds, determined by the electrical
signals and produced by the diaphragm, are radiated in the air off
the diaphragm as well. A part of the sounds is also emitted by the
enclosure via mechanical conduction.

2.3 Sound Fields

In physics, a field is any physical quantity which takes on different
values at different points in space [27]. Temperature, for example,
is a field. For every point p = (x, y, z) in space, we could specify a
temperature value as T(p), or T(p, t) if the temperature varies in
time. The notion of a field has been a practical utility in describ-
ing and analyzing various types of physical phenomena, such as
magnetic fields, electric fields, velocity fields, etc.

Likewise, the dispersion of acoustic energy over space can be
described by a sound field [11]. A sound field describes the sound
pressure for every point in space, i.e., the local pressure deviation
from the ambient pressure caused by a sound wave [1]. We follow
the nomenclature in [1] and formalize a sound field as s(p, ¢) in the
time domain and S(p, f) in the frequency domain, where f is the
sound frequency; a lower case s denotes time domain and upper
case S denotes frequency domain. S(p, f) is derived by performing
a Fourier transform of s(p, t) over a period of time.

With the concept of a sound field, it becomes easier to understand
and model the spatial behaviors of sound propagation. For example,
every sound source creates a sound field in the space around it,
and the propagation of sounds in the form of sound waves could
be modeled by a changing field as if experiencing waves passing
through it. The sounds we capture either through our ears or with
microphones are the pressure values of a sound field at certain
points in space. We investigate hereafter if the difference of voice
production mechanisms between human speakers and loudspeakers
can reflect distinctiveness in their sound fields.

3 THREAT MODEL

In this paper, we aim to detect the spoofing attacks [66] on text-
independent speaker verification systems. An adversary may apply
the following three types of attacks:

e Replay. An adversary acquires voice samples of the target user
through eavesdropping, public speech, etc., and replays the
voice samples with loudspeakers [4, 38, 67].

o Speech synthesis. An adversary synthesizes utterances in the
voice of the target user from text input using speech synthesize
technologies and plays with loudspeakers [5, 10, 23, 39].

o Voice conversion. An adversary converts a human utterance into
the voice of the target user and plays with loudspeakers [37,
57, 68].

As the three major types of spoofing attacks against speaker verifi-
cation [7], they all rely on loudspeakers to generate the spoofing
sounds. Replay attacks are the easiest and most efficient, but an
attacker could only generate fake utterances from previously ac-
quired voice samples. In speech synthesis and conversion attacks,
an attacker could fabricate any fake utterance in real time, but
its similarity to the target user’s voice is determined by the per-
formance of synthesis and conversion techniques. Apart from the
above loudspeaker-based attacks, there are also human mimicking
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Figure 3: A 2-D simulation of sound fields in the air (on the 1st row) and their directivity patterns (on the 2nd row). The values
of sound fields and their directivity patterns (calculated as the RMS values) are shown in colormaps. The sound sources are
modeled as superpositions of point sources centered at coordinate (0, 500) in each plot, and two setups are studied: (a) sources
of different size generate a 2 kHz sound; (b) a 200 mm source generates sounds with different wavelengths. It shows that the
directivity of a sound field is affected by both the sound source and the generated sound.

attacks, in which a human imitator mimics the voice timbre and
prosody of the target user with his/her mouth [32]. Since the threat
of human mimicking attacks is not fully understood [66], we do
not aim to address such attacks in this paper, even though later we
show our mechanism can distinguish a person from other people.

We make the following assumptions on the adversary.

Acoustic attacks. The adversary only attacks speaker verifica-
tion systems by generating sounds. We do not consider the attack
scenario in which the adversary compromises the hardware or OS
of the speaker verification device (e.g., a smartphone), or interferes
with the device communication. Before the attacks, the adversary
may acquire voice samples of the target user through eavesdrop-
ping or public resources, but she cannot obtain stereo recordings
of the target user in the device positions where he/she uses our
system, e.g., by forcing the user. During the attacks, the adversary
can be at any location without the user’s awareness.

State-of-the-art software and hardware. The adversary may
utilize state-of-the-art voice recording, synthesis or conversion soft-
ware and any types and qualities of microphone and loudspeaker
hardware for the attacks.

4 FIELDPRINTS

To exploit sound fields for spoofing detection, we need to answer
the following research questions.

RO1:
RQ2:

How can a speaker’s sound field reflect its identity?

How to utilize a sound field via the extraction of fieldprints
and preserve the identity information with desired usability?
To what degree do fieldprints show consistency?

To what degree do fieldprints show distinctiveness?

RQ3:
RQ4:
We study these questions in the following four subsections. Our
answers validate the distinctiveness of sound fields and show field-
print’s advantages on consistency, distinctiveness, and usability,
which make it a promising candidate for spoofing detection.

4.1 Sound Field and Speaker Identity

Before investigating the relationship between a speaker’s sound
field and its identity, we need to characterize a sound field with an
abstracted representation that facilitates understanding and com-
parison. To this end, we follow common practices and describe the
shape of a sound field with its directivity [1]. Conceptually, direc-
tivity refers to how directional the sounds from a sound source
are, i.e,, the extent to which the sounds are focused into a narrow
region in front of the source rather than spread out around it. A
sound source that shows no directivity is known as omnidirectional,
which only applies to ideal monopole point sources. In practice, all
sound sources are directional to some extent. Acoustic directivity
is a common experience. For example, when we talk, we subcon-
sciously turn our heads to the listeners, especially when we have to
repeat the missed words. This is because the sounds from human
are louder in front of the speaker’s head than in the back or on the
side, i.e., the sound field of a human speaker is front directional.
Our research question then converts to, how does a speaker’s
identity relate to the directivity of its sound field. For a complete
understanding of this issue, we consider all the factors that affect
directivity, i.e., the sound source, the sound, and the acoustic envi-
ronment. Since the reflections and diffractions from the acoustic
environment are random interference to sound fields, we evaluate
its impact later in Sec. 6. We study the first two factors, the sound
source and the sound, separately in the following. To help under-
stand, we visualize the sound fields and their directivity patterns
in Fig. 3 with MATLAB simulations using the k-Wave toolbox [60].
Factor 1: how does the sound source affect directivity when
the generated sound is the same? An ideal monopole point
source radiates sounds from a single point in space. However, in
practice, all sound sources exist in measurable sizes. This neces-
sarily suggests that the same sound could be radiated from different



points in space at the same time. As a result, the sounds from dif-
ferent parts of a sound source can arrive in phase or out of phase
with each other at various locations, and the sound field could be
either enhanced or weakened, which in turn creates directivity.
Thus, the size of a sound source affects its directivity. For example,
in Fig. 3(a), a point source and two line sources that are 100 mm and
200 mm long are simulated to generate the same sound at 2 kHz. It
shows that as the size (length) of the source increases, the sound
field becomes more directional, which is caused by the increase
of out-of-phase cancellation at off-axis angles. In practice, sound
sources are much more complex than the line source example. In
similar ways, the shape, curve, angle, and material of a source can
all affect the directivity pattern beside the size in the 3-D plane.

Remark 1: The directivity of a human is determined by the
organs involved in the voice emission stage, i.e., the mouth, nose,
and other body parts, while for a loudspeaker it is determined by
the vibrating components, e.g., the diaphragm and enclosure. Thus,
it is difficult for loudspeakers to reproduce the human sound fields due
to the physical distinctions between electromechanical components
and human organs, even if the reproduced sounds are the same. We
will examine this key assumption in the remaining of this paper.

Factor 2: how does the generated sound affect directivity
when the sound source is the same? The phase difference of
sounds from different parts of a source is neglectable when the
wavelength of the generated sound is large with respect to the size
of the sound source. However, when the wavelength is comparable
to or smaller than the source, the radiation becomes directional
despite that the sound source remains unchanged. For example, in
Fig. 3(b), a line source that is 200 mm long is simulated to generate
sounds of three wavelengths: 500, 200, and 50 mm. Results show
that a shorter wavelength (i.e., a higher frequency) leads to higher
directivity. When the wavelength is 50 mm (a quarter of the source’s
length), we observe lobing in the sound field at off-axis angles,
which is caused by out-of-phase cancellation.

Remark 2: Considering the influence of wavelength, it is a com-
mon practice to specify the sound frequency when quantifying
directivity. Since the human voice consists of sounds at various
frequencies, we could derive rich directivity patterns if we also
measure them at various frequencies.

4.2 Fieldprint Formulation

To utilize the identity information within a sound field, we are
motivated to formulate an individually distinctive pattern of voice
characteristics from a sound field as a “fieldprint”. However, it is
impractical, though desirable, to properly sample a sound field over
the entire space. Given that nearly all smartphones have at least
two microphones (one on the top and one on the bottom), we design
a fieldprint based on two sampling locations of a sound field. In
particular, we investigate the difference of recordings from the two
microphones. Suppose the two microphones are located at p; and
P2, we calculate their difference as the logarithm of the ratio of
sound pressure at the two locations:
S(p1. f)

Sr(p1,p2. f) = logm (1)

where S(p, f) is the sound pressure at location p and of frequency
f. Though Sk may not fully represent a speaker’s directivity, we
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Figure 4: The sound field sampled at two microphone loca-
tions (front and side) of a human speaker when pronounc-
ing the phoneme /5/ (as in “note”), and the derived fieldprint.
We show the acoustic energy with amplitude spectra.

envision that it can reflect a speaker’s distinctive sound field for
the following reasons. First, the difference of directivity between
speakers may render varying Sg for the same f, p1, and p3. Second,
as f changes for a speaker, S(p1, f) and S(p2, ) may not change
in step due to the change of directivity patterns, which leads to
varying Sg at various frequencies. The distinctiveness of a speaker
can be increased dramatically when combining the Sg at various
frequencies.

Therefore, we formalize a fieldprint as a vector of Sg at various
frequencies that are acquired by a smartphone’s two microphones:

F(p1.p2) = [SR(P1,p2, 1), SR(P1,P2: f2), - - SR(P1, P2, fn)] (2)

where n is the fieldprint dimension and p; and p; are the micro-
phone locations. The choice of frequency f will be discussed in the
design of our system. Technically, a fieldprint can be derived by
performing Fourier Transform on a stereo recording and calculat-
ing the difference of the two channels in the logarithmic scale. To
investigate the existence of fieldprints, we simultaneously recorded
a person pronouncing a phoneme with two microphones that are
10 cm away in front and on the side of his head. In Fig. 4, we show
Fast Fourier Transform (FFT) of the entire pronounced phoneme
between 0-10 kHz with a frequency resolution of 10 Hz. The two
audio channels are indistinguishable by human ears, which can be
confirmed from the resemblance of their FFT plots. However, due
to the non-uniform distribution of the sound field and its changing
directivity patterns, the difference of their FFT, i.e., the fieldprint,
is non-zero and changes with the frequency.

4.3 Consistency of Fieldprint

Since our mechanism relies on a fieldprint to identify a user and
detect spoofing attacks, our objective on consistency then depends
on to what degree can the fieldprints of a person be consistent
between multiple sessions of speaker verification. We study two
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Figure 5: Fieldprints of 5 long vowel phonemes (as in pro-
nouncing the 5 letters “A E I O U”), and the denoised field-
prints for clearer observation. It shows that fieldprints vary
for phonemes, which is a challenge for text-independence.

factors that have major impacts on the consistency of a fieldprint:
the speech content, and the microphone locations.

4.3.1 Impact of the Speech Content. Humans change the shapes
of their articulators to pronounce various phonemes, which may
change the sound field and fieldprint. To study the impact of speech
content, we measured the fieldprints of 44 English phonemes pro-
nounced by a human speaker. We used a smartphone and kept its
location for all phonemes. We show the 5 long vowels as an exam-
ple in Fig. 5, because their pronunciations take similar amounts of
time but require distinct mouth shapes. Although the fieldprints of
different phonemes show similar shapes, their difference is obvious
especially when the sound frequency is above 500 Hz. Our results
agree with a previous study [42] on the directivity of people in pro-
nouncing various phonemes, which also found a sharp deviation
above 500 Hz. The impact of speech content poses a challenge for
exploiting consistent fieldprints in text-independent scenarios.

Long-Time Average Fieldprint (LTAF). To tackle this chal-
lenge, we investigate the average fieldprint of a person when the
utterance consists of words and sentences, which contains vari-
ous types of phonemes. In such a case, the human voice may ap-
proach a more phonetically balanced state, in which the dynamic
influence of individual phonemes may be averaged out and static
effects of the sound source become prominent if they occur regu-
larly enough [40, 44]. This also corresponds to the normal usage
of speaker verification: a user’s identity is verified continuously
based on normal voice inputs rather than only a phoneme. Suppose
an utterance is divided into m frames that each lasts T in time. A
sound field can be stable within a single time frame if T is compa-
rable to the duration of typical phonemes. Assume the fieldprint
extracted in the ith frame is 7;(p1, p2), we formalize a long-time
average fieldprint (LTAF) in the form of

FLrap1,p2) = % D Filp1.p2) ®)
i=1
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Figure 6: From top to bottom: the long-time average field-
print (LTAF) of a sentence in its 5 time durations (all start-
ing from the beginning), the Euclidean distance of the LTAF
between contiguous time durations for 5 sentences, and the
LTAFs of 5 sentences. It shows that an increased time du-
ration renders a more stable LTAF, and different sentences
have highly similar LTAFs.

We envision that the LTAF may reduce the influence of indi-
vidual phonemes, as similar spectrum averaging techniques [40]
have been adopted by the acoustics community to observe and
compare the acoustical properties of sound sources from highly
random speeches. We recorded the human utterances of 10 Har-
vard sentences [51] listed in Appendix A, which contain specific
phonemes at the same frequency they appear in English. These
sentences represent the common distribution of English phonemes
in normal voice inputs, and they are used for standardized testing of
VoIP, cellular, and other telephone systems. The upper plot of Fig. 6
shows the LTAF of the first sentence as the time duration (i.e., N in
Eq. 3) increases. Results show that the LTAF converges to a stable
pattern as the duration increases, e.g., the LTAFs of 1s and 1.6s
duration nearly coincide. To more accurately quantify this effect,
we calculate the Euclidean distance of LTAFs between contiguous
time durations (increased by 50 ms), i.e., the distance between the
LTAFs of duration T and T — 0.05 s, as T increases. The results
on 5 sentences shown in the middle plot of Fig. 6 validate a stable
LTAF when the time duration is approximately above 1 second. The
lower plot of Fig. 6 shows that the LTAFs of various sentences are
nearly identical (with an average distance of 41), especially below
4 kHz (with an average distance of 17). Thus, we are able to confirm
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Figure 7: The fieldprints (in colormaps) of a person pro-
nouncing the phoneme /a/ (as in “late”) while moving the
recording smartphone in three directions near the speaker’s
ear: forward, upward, and sideward. It shows that the dis-
placement of microphones can change the fieldprint.

that the long-time average fieldprint meets our requirement on
consistency (and usability) for text-independent scenarios.

4.3.2  Impact of the Microphone Locations. The variation of micro-
phone locations between multiple sessions of speaker verification
may change the fieldprint. To investigate, we recorded a person
continuously pronouncing a phoneme while the smartphone was
moved in three directions beside his ear. Fig. 7 shows that a fieldprint
is robust to microphone displacements within a few centimeters.
However, displacements of more than 4 cm shall be avoided in
general, especially in the forward direction. Therefore, users are re-
quired to hold the smartphone in the same position for a consistent
fieldprint. It is easier for a user to restore the same position by using
non-moving parts of his/her body, e.g., an ear or the chest, as the
anchor point when holding the device. We will more thoroughly
evaluate the robustness and usability of CaField in Section 6.4.

4.4 Distinctiveness of Fieldprint

4.4.1 Distinctiveness between a Person and Loudspeakers. Though
our simulation suggests that it is difficult for loudspeakers to re-
produce human sound fields, the detection of spoofing attacks
nonetheless depends on the distinctiveness of fieldprints between
an authentic person and loudspeakers. We investigate the feasibility
with a proof-of-concept experiment; large-scale experiments will
be reported in Sec. 6. We compare the LTAFs of a person (same in
Sec. 4.3) saying “show me my messages” and 3 loudspeakers (the
first 3 in Tab. 2) replaying it, which all vary in size and shape. We
recorded the person and loudspeakers with the same smartphone
in similar positions. The upper plot of Fig. 8 shows that the LTAFs
of the 3 loudspeakers are very different from the person’s. The
average Euclidean distance of the replaying loudspeakers’ LTAFs
to the person’s is 106. While in comparison to the results in Sec. 4.3,
the average distance is only 41 between the person’s own LTAFs
even when the speech content varies.

4.4.2  Distinctiveness between People. We also investigate the fea-
sibility of distinguishing a person from other people. Similarly,
large-scale experiments will be reported in Sec. 6. We recorded 5
people saying “show me my messages” with the same smartphone
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Figure 8: The LTAFs of a person (P1) and 3 replaying loud-
speakers (LS1-LS3), and the LTAFs of 5 people (P1-P5). The
utterance and microphone locations are the same. It shows
that the LTAFs can be distinguished between a person and
loudspeakers, and even between different people.

in similar positions beside their ears. Their LTAFs in the lower plot
of Fig. 8 clearly shows the distinctiveness between people, with
an average Euclidean distance of 121. We assume the difference
between people’s mouth, head, and torso can affect directivity in dif-
ferent frequency ranges and create distinctive fieldprints, as a study
has found that directivity varies substantially among singers, and
increased directivity could occur through a larger mouth opening,
a larger or flatter face, and a larger torso [18].

Effect of the mouth. Since most of the human voice is radiated
by the mouth, the mouth opening is equivalent to the major sound
source. The maximum mouth opening of an adult is around 5 cm
on average, with a range from 3.2 cm to 7.5 cm [69]. Therefore, the
mouth opening will mostly affect directivity above 2.3 kHz.

Effect of the head. The human head blocks backward sound ra-
diation and reinforces forward radiation with reflections from the
face, which is known as the head shadow effect [46, 48]. For a head
width of 17 cm, directivity above 1 kHz will mostly be affected.

Effect of the torso. Similar to the head shadow effect, the human
torso provides further reflecting and shadowing effects, with a
larger size extending its impact to a lower frequency range.

4.5 Fieldprint Observations
Fieldprint shows the following advantages in spoofing detection:

(1) Consistency. The fieldprint of a user is consistent in the form
of long-time average fieldprint (LTAF) for varying speech con-
tent and with modest microphone displacement.

(2) Distinctiveness. The LTAF of a user is distinctive from that
of loudspeakers and other people.

(3) Usability. The formulation of a fieldprint is only based on two
microphones on a smartphone and poses little constraints on
the device positions. An LTAF is text-independent and can be
used to continuously authenticate the voice input.
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5 DESIGN

Powered by the advantages of fieldprints, we design a spoofing
detection system named CaField.

5.1 Overview

The core idea of CaField is to detect spoofing attacks by matching
the long-time average fieldprint of an utterance with a previously
enrolled profile of the claimed identity. CaField consists of four
major modules: Signal Processing, Fieldprint Extraction, Fieldprint
Matching, and Decision Logic. Fig. 9 shows a modular representation
of CaField. The upper panel is the enrollment process, and the
lower one is the verification process. A user’s voice input is recorded
simultaneously by two microphones on a smartphone. The two
audio channels are first processed in the time and frequency domain
to accurately quantify the sound pressure at the two microphone
locations. A number of fieldprints are extracted from the processed
signals, and an LTAF is then calculated to emphasize a phonetically
balanced directivity pattern of the user. A feature vector is further
extracted from the LTAF with a filterbank in order to lower its
dimension. In the enrollment mode, a speaker model is trained using
the feature vectors of a target speaker. In the verification mode, the
feature vectors extracted from an unknown speaker are compared
with the model of the claimed identity to give a similarity score.
The speaker’s identity is verified if the similarity score exceeds a
predefined threshold, otherwise, it is rejected.

5.2 Signal Processing

Pre-Processing. We first calculate the root mean square of the
two audio channels to ensure that the microphone that receives
higher acoustic energy is always the p; in Eq. 1. Then we perform
voice activity detection to remove the non-speech portions of the
signals, including the silent pauses and breaks within the utterance
and transient background noises that appear as pulses. These parts
of signals will impair the accuracy of fieldprints because they do
not reflect the sound field of the speaker. We edit the two channels
at the same time to keep them always synchronous.

Short-Time Fourier Transform. After generating a signal that
has little to no pauses between words and phrases, we perform short-
time Fourier transform (STFT) analysis to measure the sound field
at various time and frequencies. We segment the signals into time
frames of 20 ms, with a 50% overlap between successive ones. The
20 ms frame length is shorter in duration than typical phonemes,

which allows the signal within a frame to be stationary. The over-
lap ensures that even the shortest phonemes will have an overall
effect on the resulting fieldprints. Before computing the signals’
spectrogram, we multiply the signals in each frame with a Ham-
ming window function to reduce the influence of spectral leakage.
Though the window function decreases the amplitude of phonemes
that happen to occur early or late in the frame, this issue can be
remedied by the overlap between frames. To optimize the perfor-
mance of Fast Fourier Transform (FFT), we set the FFT input length
to be the next power of 2 from the original signal length. For ex-
ample, when the audio sample rate is 48 kHz, a 1024-point FFT is
performed on a 20 ms frame which contains 960 data points, result-
ing in a spectral frequency resolution of 48 kHz/1024 = 46.875 Hz.

After signal processing, we transform the two channels of audio
signals into two sequences of amplitude spectrum, which represent
a time-varying sound field at the two microphone locations.

5.3 Fieldprint Extraction

Given the two channels’ spectra, we extract a sequence of fieldprints
following Eq. 1 and 2. It is worth noting that by calculating the
logarithm of the ratio in Eq. 1, we also diminish the influence of
the speaker’s volume. After that, we average them to derive a long-
time average fieldprint (LTAF) of the utterance following Eq. 3. The
size of an LTAF is dependent on the number of points for FFT and
the selected frequency range. For example, with a 48 kHz sample
rate and 1024-point FFT, the LTAF will have 513 elements if the
frequency range is 0-24 kHz and 215 elements if it is 0-10 kHz.

Considering that CaField is designed for smartphones, we need
to save the computational cost with cost-effective fieldprint match-
ing algorithms. Low-dimensional features are thus desirable, be-
cause traditional statistical models cannot handle high-dimensional
data [50], and the number of required training samples grows ex-
ponentially with the number of features [34]. We decrease the
dimension of LTAF by multiplying it with a filterbank, which is a
series of bandpass filters that each returns the average value in a par-
ticular frequency band. We consider different frequencies to have
equal effects on the sound field, thus for the filterbank, we adopt
rectangular-shaped bandpass filters that are evenly located along
the linear frequency axis. If the number of filters in a filterbank is
N, the final result is an N-dimensional feature vector.

5.4 Fieldprint Matching

We model the distribution of a speaker’s feature vectors with a
Gaussian mixture model (GMM) [49], which is a stochastic model
composed of a finite mixture of multivariate Gaussian components.
GMM is computationally inexpensive and has been the de facto
method in traditional speaker verification. For an N-dimensional
feature vector x, the mixture probability density function is:

M
pxl) = ) wipi(x) (4)
i=1

where M is the number of Gaussian components, and w; is the
mixing weight of the ith Gaussian component p;(x), which is pa-
rameterized by an N X 1 mean vector y; and an N X N covariance
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The mixture weight satisfies Z?/:I 1 wi = 1. A GMM is trained for
a specific user based on the feature vectors extracted in the en-
rollment using the iterative expectation maximization (EM) algo-
rithm [25]. In the verification mode, feature vectors are extracted
from the utterances of an unknown speaker, and their likelihood
values are calculated with the trained model of the claimed identity
and compared with a predefined threshold.

6 EVALUATION

In this section, we evaluate the performance of CaField on the
detection of spoofing attacks, i.e., how well can CaField distinguish
an authentic human speaker from loudspeaker-based imposters.
We also briefly report the results on distinguishing an authentic
human speaker from other people, as a reference to detecting human
mimicking attacks in the future. We report the overall performance
from the two perspectives and specifically evaluate the factors that
affect the performance on spoofing detection. We also study the
robustness of CaField in verifying the same user across multiple
sessions, i.e., factors that may reduce the consistency of fieldprints
and damage usability. Unless otherwise specified, a filterbank of 9
filters ranging from 0 to 4 kHz is used in fieldprint extraction.

6.1 Experiment Methodology

Human Voice Data Collection. We collected the utterances
from 20 human participants including 6 females and 14 males.?
The participants were either undergraduate or graduate students
recruited in our institute, whose ages ranged from 18 to 36. They
were all informed of the purpose of our experiments and the basic
ideas of CaField. Their voices were recorded by a Huawei P10
Plus smartphone while they held it in two types of positions: 1)
on the side of their heads as if they were making phone calls, and
2) in front of their heads or chests as they normally talk to voice
assistants. We believe the two types of positions represent the most
common scenarios of speaker verification on a smartphone. We
did not pose any restriction on the exact ways that they held the
smartphone, yet we did request them to keep the smartphone in the
same position for enrollment and verification. For each of these two
types of positions, each participant was requested to say 10 English
commands for enrollment and 40 for verification. The participants
chose their commands freely from ok-google.io, which provides a
random list of voice commands in 25 categories that are commonly
used to interact with the Google voice assistant. The participants
were free to choose 2 commands from each category, and a total
of 100 different commands were collected from each participant
in the two positions, amounting to 2000 commands for the human
voice dataset. The recording was performed in an office room with
background noises such as people talking, walking, and HVAC
noises.

3We followed the local regulations to protect the rights and welfare of the human
participants despite the absence of IRB in our institute.

Table 2: Loudspeakers used for collecting spoofing attacks.

No. Type Manuf. Model Size (L*W*H in cm)
1 Loudspeaker HiVi M-50W 14.9x15.2x 17.6
2 Loudspeaker Sonos PLAY:5 12.5 X 36.3 X 21.6
3 Loudspeaker JBL GO 3.2Xx8.5%7.0
4 Television Samsung UA55MUF30Z 7.5X123.5X71.3
5 Laptop Samsung 900X5M 23.7x34.6 X 1.5
6 Smartphone LG Nexus 5X 14.7 X 7.3 % 0.7
7 Smartphone  Motorola G4 Plus 15.4x7.7%0.8
8  Smart speaker Amazon Echo 8.2x8.2x23.4

Spoofing Attack Data Collection. We implemented spoofing
attacks by replaying the above collected human voice* with loud-
speakers and recording them with the same Huawei smartphone.
Since our method is to distinguish a human speaker from loudspeak-
ers and is text-independent, we do not intentionally differentiate
replay, speech synthesis, and voice conversion attacks as they all
use loudspeakers. We utilized the 8 loudspeakers listed in Tab. 2,
which are of various sizes and qualities. Each human-generated
recording was replayed by all the loudspeakers and recorded in
similar positions, i.e., on the side and in front of the loudspeaker,
same in the human voice collection, because we assume an attacker
is most likely to fabricate fieldprints similar to those of human
speakers in similar positions. There are in total 16000 spoofing
attack attempts. Spoofing attacks in random positions and using
human-shaped loudspeakers will be discussed later in Section 7.1.

Metrics. We use the following metrics throughout the evalua-
tion. False Acceptance Rate (FAR): it characterizes the rate at which
an imposter is wrongly accepted by the system and considered as a
legitimate user. False Rejection Rate (FRR): it characterizes the rate
at which a legitimate user is falsely rejected by the system. Equal
Error Rate (EER): it shows a balanced view of the FAR and FRR and
is defined as the rate at which the FAR equals to the FRR. Accuracy:
it measures the overall probability that the system could accept
legitimate users and reject imposters.

Effectiveness of the Spoofing Attack Dataset. To validate
the effectiveness of our attacks, we implemented a traditional
speaker verification system based on the classic Gaussian Mixture
Models. The system is fully functional with our human voice dataset
as it could verify authentic users with an average FRR of 0.5% and
reject other users with an FAR of 3.3%. With the spoofing attack
dataset, the FAR is 65.4%, which corresponds to the performance of
spoofing attacks reported in [4, 67] and confirms the effectiveness.

6.2 Overall Performance

For each participant, we build two models separately for the two
smartphone positions. Each model is trained based on the 10 com-
mands in the enrollment, and the rest 40 commands are considered
as positive samples in the verification. We summarize the overall
performance of CaField in Tab. 3 and discuss in the following.
Distinguishing Authentic Users from Loudspeaker-Based
Imposters. For each user model, the negative samples include all
the replayed commands of that participant by all loudspeakers. By

4We replayed one channel of the stereo recordings that shows better audio quality, as
our threat model excludes that the attacker obtains both two channels.



Table 3: The overall performance of CaField.

Distinguish Authentic Users Accuracy FAR FRR  EER

From loudspeaker-based imposters ~ 99.16%  0.82% 0.97% 0.85%
From other human participants 98.42%  1.87% 1.43% 1.84%
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(a) ROC curves in spoofing detection.  (b) Feature separation of 20 participants.

Figure 10: The ROC curves of five participants in spoofing
detection, and the distinctive features of 20 participants (in
the side position) after dimension reduction with t-SNE.

averaging the results of the 40 participant models, we derive an
overall accuracy of 99.16%, an FAR of 0.82%, an FRR of 0.97%, and
an EER of 0.85%. The results show that our system is highly effec-
tive in both accepting authentic users and rejecting imposters. We
also observe that the performance varies for different participants.
For example, Fig. 10(a) shows the receiver operating characteristic
(ROC) curves of 5 participants whose EERs are 0.00%, 1.54%, 1.98%,
3.99%, and 6.01% respectively. Though our system outperforms most
prior work in Tab. 1, we do not emphasize the comparison since
most of them were evaluated with different setups, assumptions,
and separate datasets of voices and test commands.

Distinguishing Authentic Users from Other Human Par-
ticipants. For each user model, the negative samples include all
the human voice data from the other 19 participants. By averaging
the results of 40 participant models, we get an overall accuracy of
98.42%, an FAR of 1.87%, an FRR of 1.43%, and an EER of 1.84%. In
Fig. 10(b), the feature vectors of the 20 participants are visually
clustered after dimension reduction with t-Distributed Stochastic
Neighbor Embedding (t-SNE) [41]. The results show that with field-
prints we can differentiate different human speakers, and possibly
human mimicking attacks as well.

6.3 Factors Affecting Spoofing Detection

We evaluate the factors that may affect the performance on spoofing
detection, including the system parameters, smartphone position
and distance, loudspeaker type, and recording smartphone.

Impact of System Parameters. In order to find out how the
performance on spoofing detection changes with our system pa-
rameters, in particular the filter number and frequency range of the
filterbank, we conduct a parameter scanning. The number of filters
in a filterbank varies from 1 to 16 at an interval of 1. We use 0 Hz
as the lower frequency boundary of the filterbank, and the upper
boundary varies from 1 kHz to 16 kHz at an interval of 1 kHz. We
use the same training and testing samples for all combinations of
these two parameters.

Table 4: The impact of phone position on the performance
of spoofing detection, showing superiority on the side.

Position  Accuracy  FRR FAR EER

Front 98.74% 2.01% 1.16% 1.28%
Side 99.72% 0.63% 0.34% 0.38%

Filter Number

Filterbank Upper Limit (kHz)

Figure 11: The EERs of spoofing detection under various
combinations of system parameters.

As shown in Fig. 11, the performance of CaField generally im-
proves with more filters in the filterbank, which is reasonable as
the feature vector represents a more fine-grained fieldprint. In par-
ticular, we observe tremendous performance improvement when
the number of filters increases from 1 to 4. The performance also
increases with the upper frequency boundary of the filterbank, but
it slightly worsens when the boundary is above 5 kHz. This in
part agrees with our observation in Fig. 6 that the differences of
LTAFs between sentences are greater above 4 kHz, whereby the
distinctiveness of a person’s fieldprints is reduced.

We observe the best performance (i.e., lowest EER) when the
filterbank consists of 12 filters under 4 kHz. Although this set of
system parameters is not exactly what we use to evaluate the overall
performance (9 filters under 4 kHz), their difference in EER is less
than 0.2%. This validates the rationality of our model and choice
of parameters. The results show another advantage of CaField on
supporting low sample rates. According to the Nyquist-Shannon
sampling theorem [54], a minimum of 8 kHz sample rate is required
to correctly sample signals below 4 kHz. Previous microphone-
based spoofing detections [70, 71] require sample rates above 48 kHz
and recommend 192 kHz.

Impact of Smartphone Position. We compare the performance
when the smartphone is held in front or on the side of the partici-
pants. The results in Tab. 4 show that holding the smartphone on
the side yields slightly better performance: an increase of detection
accuracy by nearly 1%, a decrease of FRR by 1.38%, FAR by 0.82%,
and EER by 0.9%. We speculate that the reasons are mainly twofold:
1) when held on the side, the smartphone is usually closer to the
mouth and thus could extract richer sound field features, and 2) it
is easier for users to keep the smartphone in the same position for
enrollment and verification when it is held on the side. Nonetheless,
both two types of smartphone positions yield EERs less than 2%.

Impact of Smartphone Distance. We study the performance
when users hold the smartphone at various distances in front of
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Figure 13: The impact of loudspeaker type on the true rejec-
tion rates of spoofing attacks.

them. We show the distribution of their preferred body-to-microphone
distances and the corresponding average EERs in Fig. 12. It shows
that most participants prefer to hold the smartphone within a dis-
tance range of 15-30 cm, yet we do not find an apparent correlation
between the distance and performance of spoofing detection.

Impact of Loudspeaker Type. We investigate the performance
when the attacker uses different types of loudspeakers. The 8 loud-
speakers in Tab. 2 include three traditional loudspeakers, a televi-
sion, a laptop, two smartphones, and an Amazon Echo. They vary
in size and quality and represent the common types of loudspeak-
ers that an attacker may use in various attack scenarios. Among
them, the enclosure of the HiVi loudspeaker (No. 1) is closest to
a human head by size. We show the true rejection rates (TRR) of
these loudspeakers in the front and side positions separately in
Fig. 13. It shows that the quality and size of loudspeakers have
limited impact on the performance of spoofing detection, which
supports our earlier assumption that the sound fields of human
speakers and loudspeakers are distinct even if their outer sizes are
similar, because they vary in shapes and materials. We also notice
that in general, the detection rates in the side position are higher
than in the front, which agrees with our earlier results.

Impact of Recording Smartphone. We investigate with two
more recording smartphones, a Motorola Moto G4 Plus and an LG
Nexus 5X. Both of them yield comparable performance to that of the
Huawei smartphone. Notice that CaField by design does not allow
using one smartphone to enroll and a different one to verify, because
the diverse locations, spacing, and models of microphones on a
smartphone can lead to distinct fieldprints. This security feature
allows CaField to authenticate a user and the device at the same
time, which reduces the attack surface.

6.4 Robustness and Usability

A system that is not robust to the changing variables between
multiple verification sessions will likely have high FRR and bad
usability. In the following, we evaluate the robustness of CaField
to factors that may vary across sessions and applications, including
the smartphone displacement, user posture, recording environment,
and language of utterance.

Impact of Smartphone Displacement. In view of the location-
dependent nature of fieldprints, we evaluate CaField’s robustness
to smartphone displacement between enrollment and verification.
We requested a participant to use our system for 12 consecutive days.
In each day, 30 commands were recorded at different times when the
user held the smartphone in both the front and side positions. Our
system enrolled the participant with only the commands recorded
in the first day; it can effectively detect spoofing attacks with an
FAR below 1.03% in the side position and 0% in the front position.
Though we instructed the participant to restore the smartphone
position that was used in enrollment (on the first day), displacement
of the smartphone in verification was unavoidable especially as the
days last. However, verification results show that the FRRs are all
0% in the side position except for 3 days (5th, 6th, 8th), which are
13.3%, 10.0%, and 3.3% respectively, and the FRRs are all 0% in the
front smartphone position. It shows that our system can tolerant
modest smartphone displacement with the user’s attention. We
envision that the impact of smartphone displacement caused by the
change of user habits over a longer period of time can be alleviated
by updating the user profile regularly.

Impact of User Posture. We evaluate whether CaField can
still successfully recognize a user if his/her posture changes. We
consider the standing and sitting postures since they are most
commonly used in speaker verification. We also consider the impact
of smartphone positions in these two conditions, because the front
position may be more susceptible to the reflections from the lower
limbs when seated. The utterances collected from two participants
when standing are used for enrollment and those collected when
seated are used for verification. The average FRRs in the front and
side positions are both 1.02%, which show the robustness to the
change of user postures regardless of the smartphone position.

Impact of Recording Environment. We evaluate the robust-
ness of CaField when a user enrolls in one place and verifies in
another place. We requested two participants to enroll in a meeting
room and verify at different places, including an office room, a
hallway, an outdoor open space, and a toilet stall. The FRRs are
0.00%, 2.50%, 5.00%, and 18.42% respectively. The results suggest
that CaField is robust to the change of environment in general,
but the reflections and reverberations in a narrow space can affect
a speaker’s sound field and thus are better avoided.

Impact of Language. In view of the text-independent nature
of our system, we evaluate our system’s robustness to the language
of utterance. We requested a participant to enroll with English
commands and verify with Chinese commands, and vice versa. In
either condition, we achieve a 100% true acceptance rate. Further
observation on the similarity of feature vectors (shown in Appen-
dix B) explains the results and suggests that CaField can be used
in multilingual applications.



7 DISCUSSION
7.1 Security

Being aware of our mechanism, a motivated attacker may try to
elude the detection of CaField with variants of spoofing attacks.
We discuss four approaches that are most likely to be exploited and
CaField’s resistance to them in the following.

Fieldprint Bruteforce Attacks. Although the sound fields of
human and loudspeakers are different, it is possible that their field-
prints are similar in different positions. An attacker may try to
bruteforce the fieldprint of a user by placing the recording smart-
phone in random positions around a loudspeaker. To examine the
threat of such attacks, we replayed the voice commands of two
enrolled users with loudspeaker No. 1, and for each user’s voice, we
placed the recording smartphone in 100 random positions around
the loudspeaker, covering all directions from 1 cm to 1 m away. The
recorded voices were used to attack the two user’s models (both
front and side) trained in Sec. 6. Results showed that the replayed
voices were falsely accepted in 3 out of 100 positions (i.e., 3% FAR)
for only one user model in the front position. For the other 3 user
models, the FARs were all 0%. Though feasible, a successful field-
print bruteforce attack requires numerous attempts and is easily
preventable by setting a limitation for the number of trials.

Sound Field Fabrication Attacks. An attacker may try to fab-
ricate the sound field of a target user with human-shaped loud-
speakers, e.g., head and torso simulators (HATS) [17], in hope of a
matched fieldprint. HATS are manikins with built-in ear and mouth
simulators (microphones and loudspeakers), which are expensive
professional acoustic equipment designed for in-situ tests on elec-
troacoustic products. We do not have access to such equipment
for an evaluation, but we presume that spoofing attacks with an
HATS might fail for two reasons. First, it is difficult to accurately
fabricate the sound field of a target user with an HATS. Studies
have shown that a standard HATS may not represent the directiv-
ity of an average human subject [18, 22, 30]. Even if it does, the
personal difference in the sound field makes the attack difficult,
as we have shown that a person’s fieldprint is distinctive among
other people. Second, even if a custom HATS is made in the exact
shape of a target user, the material difference between artificial and
real heads would cause significant differences among directivity, as
found in [14-16].

Stereo Replay Attacks. An attacker may utilize two loudspeak-
ers to replay a stereo recording of the target user to a smartphone’s
two microphones. In this way, the attacker might control what
each microphone receives and directly fabricate the fieldprint. Our
threat model excludes such attacks because it is difficult to obtain
an authentic stereo recording in the first place. Since a fieldprint is
extracted from a pair of locations, it is difficult for an adversary to
directly measure a user’s sound field at the exact microphone loca-
tions where the user uses our system, which are normally within a
user’s intimate space (< 0.45 m) [31]. It is also difficult to acquire
it indirectly from public speeches, eavesdropping on phone calls,
etc., because currently, nearly no audio application requires stereo
recordings of a user’s voice.

Twin Mimicking Attacks. Though we have shown fieldprint’s
distinctiveness between people, it is interesting to know whether
the fieldprints of twins will resemble, since their similarity in the

physiological features may lead to similar sound fields. We recruited
two pairs of twins (all males), including both identical twins that
look similar and fraternal twins that look very different. All partici-
pants spoke the same 100 phonetically balanced sentences from [28]
in both the front and side device positions, and we requested them
to mimic their twin brothers under the same setup. CaField can
effectively distinguish the fraternal twins with an EER of 0%, yet to
our surprise, it can also distinguish the identical twins with an EER
of 2%. We examine their feature vectors and show in Appendix B.
Compared with the fraternal twins, the feature vectors between the
identical twins show higher similarity in shape (especially in the
side device position), but we also observe a slight difference in their
distributions, which explains the result. We assume that even for
identical twins, distinctive fieldprints exist due to the nonidentical
habits in talking and using smartphones. With enough practice,
twin mimicking attacks might pose a challenge to CaField as to
any speaker verification system, though such attacks are extremely
rare.

7.2 Limitations and Future Work

Arbitrary Device Positions Across Sessions. Though we do
not specify the positions in which users hold their smartphones,
they are required to restore the positions used in enrollment. Au-
thenticating users at arbitrary device positions across sessions is a
direction for future work. We envision that in the future, we can
investigate the relationship between the smartphone position and
fieldprint, and thus adapt our model accordingly.

Long-Range Speaker Verification. In this paper, we focus on
speaker verification in the near field, e.g., users need to use our sys-
tem when the devices are within the reach of their hands. Perform-
ing speaker verification from a long range has been a recognized
challenge even for traditional speaker verification systems due to
the reverberation of sounds [35, 45, 47]. Since fieldprints in the
far field are less distinctive, long-range speaker verification with
fieldprints is a direction for future work. Nevertheless, our system
can still detect spoofing attacks from a long range, because field-
prints acquired in the far field will be distinctive from fieldprints of
authentic users acquired in the near field.

Liveness Detection. An alternative approach to detecting spoof-
ing attacks is via liveness, i.e., by detecting the live features of
human speakers that loudspeakers do not possess. We envision
that a speaker’s sound field could also reflect its liveness infor-
mation through the change of directivity. For example, phonemes
that are pronounced with larger mouth openings may show higher
directivity than those with smaller mouth openings. Thus, we may
detect spoofing attacks if we could correlate the dynamic directivity
patterns with the speech content in a predictable manner.

Expanding the Dataset. In this paper, we collected our own
dataset on 20 people and 8 loudspeakers as CaField requires stereo
recording and consistent device position. Evaluating the robustness
of our system with a larger dataset of both extra users and spoofing
attacks is a direction of future work.

8 RELATED WORK

The research community has spent significant efforts in protecting
speaker verification from spoofing attacks, mainly by seeking for



attack traces in two directions: the acoustic artifacts of attacks, and
the liveness distinction between human and loudspeakers.

Acoustic artifacts of spoofing attacks can exist on the physical,
hardware, and software levels, including the channel noise [64],
far-field recordings [61], frequency response of loudspeakers [13],
similarity to stored recordings [53], audio editing [62], etc. Subtle
attack traces have been uncovered from features in various domains,
including the dynamic speech variability [3], spectro-temporal tex-
ture [2], higher orders of Mel-cepstral [19], phase spectrum [65],
relative phase shift [24], etc. Spoofing detections in this direction
may suffer high false acceptance rate (FAR) when a motivated at-
tacker avoids the artifacts with improved attack procedures, e.g., us-
ing high-quality microphones and loudspeakers or more advanced
voice synthesis and conversion tools. In such a case, the sounds from
an authentic user and an imposter may become indistinguishable
in both time and frequency domains.

Researches in the other direction have sought for distinctions
on liveness between human and loudspeakers that exist even if
acoustic artifacts are minimal. For example, the way that a loud-
speaker vibrates its diaphragm is distinct from how a person moves
his/her mouth in speaking. A live human can be confirmed by mea-
suring the mouth motion and matching it with the speech content.
A number of studies have validated this idea by measuring the
mouth motion with a camera [21], or through electromagnetic re-
flections [43] and ultrasonic reflections [70] off the mouth. Another
type of approach is based on the observation that a part of the
human voice is also conducted through the body besides airborne
transmission, and these two channels of voices share commonal-
ities. Feng et al. [26] proposed to measure the body conduction
with a wearable device (e.g., glasses), and Shang et al. [52] pro-
posed to measure the low-frequency vibrations of the throat from
a smartphone in contact. Some studies explored other characteris-
tics that are exclusive to loudspeakers or human speakers. Chen
et al. [20] proposed to detect by the magnetic fields generated by
loudspeakers using the magnetometers on smartphones, and Zhang
etal. [71] proposed to measure the time difference of arrival (TDoA)
to a smartphone’s two microphones, which are diverse for various
phonemes because they are produced at different locations in an
oral cavity. Shiota et al. [55, 56] and Wang et al. [63] proposed to
identify live users by detecting the pop noise recorded in human
utterances due to the exhalation, but this requires the microphone
to be very close to the mouth. CaField exploits the difference in
sound fields between authentic users and spoofing attackers while
achieving a balance of security and usability. It requires only one
smartphone with little constraints on the device position, and it
supports continuous authentication of the voice input.

The acoustic community has discovered the distinctive directiv-
ity patterns of human sound fields. Halkosaari et al. [30] measured
the directivity of artificial mouth simulators (loudspeakers) and a
group of human subjects and found a difference greater than 10 dB.
They suggested that directivity is affected by the aperture size of the
mouth, the upper body, and the speech content. [15, 22] also found
evident differences in the directivity patterns between human and
loudspeaker in an open space and inside cars. These studies were
motivated for tests of acoustic effects in the telecommunication
industry and not intended for spoofing detection.

9 CONCLUSION

In this paper, we address the challenge of spoofing detection for
speaker verification utilizing the difference of sound fields between
authentic users and spoofing attackers. We propose a new feature,
the fieldprint, to quantify the difference and design a spoofing
detection system named CaField. It is highly effective in protecting
text-independent speaker verification and requires no extra devices
other than a smartphone and little constraints on device positions.
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APPENDIX

A HARVARD SENTENCES — LIST 11

1) Oak is strong and also gives shade.

2) Cats and dogs each hate the other.

3) The pipe began to rust while new.

4) Open the crate but don’t break the glass.

5) Add the sum to the product of these three.
6) Thieves who rob friends deserve jail.

7) The ripe taste of cheese improves with age.
8) Act on these orders with great speed.

9) The hog crawled under the high fence.

(10) Move the vat over the hot fire.
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Figure 14: Feature vectors of commands in Chinese and Eng-
lish spoken by the same person. It shows that the language

of speech has limited impact on fieldprints.
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Figure 15: Feature vectors of fraternal twins in the side and
front device positions. CaField can effectively distinguish
the fraternal twins with an EER of 0% in both positions.
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Figure 16: Feature vectors of identical twins in the side and
front device positions. CaField can effectively distinguish
the identical twins with an EER of 2% in the side position
and 0% in the front position.
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