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Abstract—Autonomous vehicles rely on sensors to measure
road condition and make driving decisions, and their safety
relies heavily on the reliability of these sensors. Out of all
obstacle detection sensors, ultrasonic sensors have the largest
market share and are expected to be increasingly installed
on automobiles. Such sensors discover obstacles by emitting
ultrasounds and analyzing their reflections. By exploiting the
built-in vulnerabilities of sensors, we designed random spoofing,
adaptive spoofing, and jamming attacks on ultrasonic sensors,
and we managed to trick a vehicle to stop when it should keep
moving, and let it fail to stop when it should. We validate our
attacks on stand-alone sensors and moving vehicles, including
a Tesla Model S with the ‘Autopilot’ system. The results show
that the attacks cause blindness and malfunction of not only
sensors but also autonomous vehicles, which can lead to collisions.
To enhance the security of ultrasonic sensors and autonomous
vehicles, we propose two defense strategies, single-sensor based
Physical Shift Authentication (PSA) that verifies signals on the
physical level, and Multiple Sensor Consistency Check (MSCC)
that employs multiple sensors to verify signals on the system
level. Our experiments on real sensors and MATLAB simulation
reveal the validity of both schemes.

Index Terms—Autonomous Vehicle, Ultrasonic Sensor, Security
Analysis, Defense.

I. INTRODUCTION

AUTOMOBILE is one of the most promising sectors for

the Internet of Things (IoT). By converting vast amount

of data into meaningful and actionable knowledge, the IoT can

help solve many of modern society’s challenges on automotive

safety and transportation efficiency. Among them, autonomous

(self-driving) vehicles is one notable achievement, and it holds

the key to a widespread Internet of Vehicles. Self-driving

technologies are built on modern sensors that enable vehicles

to monitor the driving environment by themselves. Already,

a preliminary stage of self-driving has been widely deployed

as the Advanced Driver Assistance Systems (ADAS). Looking

forward, vehicles will inevitably rely on these sensors and their

measurements to become increasingly intelligent until they

reach the full-fledged self-driving capability, i.e., require zero

human interaction to make driving decisions. However, the

safety of self-driving vehicles is determined by the reliability

of sensors. Recent unfortunate fatal accidents [1], [2] of Tesla

Model S with the Autopilot system [3] (i.e., the most advanced
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autonomous systems in the market) are caused by sensor

failures, i.e., sensors cannot reliably detect neighboring cars

in normal yet special road conditions. Such conditions are

benign, and it is worth investigating the malicious scenarios to

understand the following: (a) How will these sensors perform

under intentional attacks in practice? (b) How will automobiles

behave under such attacks? (c) How to enhance these sensors

to defend against intentional attacks? This paper answers these

questions with a case study on ultrasonic sensors.
Ultrasonic sensors detect obstacles and measure distance by

probing the surroundings actively with pulses of ultrasound.

They are widely used on IoT devices for ranging and oc-

cupancy detection, which correspond to two scenarios on a

vehicle: (1) parking when a car is traveling at low speeds and

(2) detecting blind spot at high speeds. In terms of parking

sensors, more than half the new vehicles in Europe and Asia

have rear parking sensors [4], and the Indian government

will soon mandate all new vehicles to be equipped with

such sensors to lower the risk of backover crashes [5]. Since

NHTSA has reported 292 fatalities with 44% of them being

children under five-year old and 18,000 injuries resulting from

backover crashes every year [6], it is not surprising that the

global automotive parking sensors market is predicted to grow

steadily during the next few years with a compound annual

growth rate of almost 24% by 2020 [7]. As a pioneer of

autonomous vehicle in the consumer market, Tesla Motors

has already employed ultrasonic sensors for its ‘Autopark’ and

‘Summon’ feature (self-driving with driver outside the vehi-

cle) [8] and to monitor the blind spot at high speed [9]. Thus,

it is critical to discover any vulnerabilities and implement

remedies before billions of ultrasonic sensors are installed in

vehicles and other IoT devices for various purposes.
Determining the right rules to make moral and ethical

decision of self-driving cars is paramount, but it is far more

complicated than one can imagine, because the driving deci-

sions impact not only passengers’ safety but also the safety

of others. Thus, we focus on investigating the reliability of

ultrasonic sensors and studying whether automobiles can make

the right driving decisions that depend on these sensors. The

goal is to design strategies that can avoid potential automobile

collisions. Thus, sensors should detect all present obstacles and

avoid false alarms, and vehicles should handle the following

two scenarios correctly:

a) Stop with obstacles: a vehicle should stop moving towards

obstacles on the driving path, and avoid active collision.

b) Keep moving without obstacles: a vehicle should keep

moving when there is no obstacle on the driving path, and

prevent passive collision with the unprepared traffic.
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We examine the feasibility of an attacker inducing incorrect

driving decisions by exploiting sensor design vulnerabilities,

and report vulnerabilities found on current sensor systems

and real moving vehicles. To alleviate the threats, we design

defense strategies that protect ultrasonic sensors against the

attacks and facilitate reliable automated driving decisions.

A. Contributions

We summarize the attacks that lead to incorrect driving

decisions in Table I, and list our contributions from security

analysis and security enhancement aspects below.

Security Analysis. To analyze the security of ultrasonic

sensors in automobiles, we perform black-box experiments,

reverse engineer the sensors’ printed circuit boards, and tap

into the signal path. We verify the attacks on 11 stand-alone

ultrasonic sensors in the laboratory and the on-board sensors

of 7 vehicles (including a Tesla Model S) outdoors, using low-

cost COTS hardware. To the best of our knowledge, we are

the first to experimentally examine the feasibility of attacking

ultrasonic sensors on real moving vehicles. We are able to

induce the following incorrect driving decisions.

I. A vehicle stops when it should keep moving. We trick the

on-board ultrasonic sensors to report non-existing obstacles

anywhere within the detection range by designing two

types of spoofing attacks—random spoofing and adaptive

spoofing. We can force a moving Tesla in Summon mode

to stop by creating imaginary obstacles.

II. A vehicle keeps moving when it should stop. We

found that the design choices of ultrasonic sensors make

it possible to hide obstacles. A jamming attack or an

adaptive spoofing attack can both prevent sensors from

reporting obstacles. Our experiments show that an attacker

can cause a moving Tesla in hand-driving mode to collide

into obstacles (e.g., students) from 10 meters way and cause

collision in the Summon mode from 1 meter away.

Security Enhancement. Enhancing ultrasonic sensors is

challenging because any defense strategy that requires a ma-

jor modification of existing low-cost hardware will not be

accepted by the automotive industry. The narrow operational

frequency band and long physical delays of ultrasound make

it difficult to utilize any traditional modulation-based schemes.

We overcome all aforementioned challenges and design two

security mechanisms: single-sensor based Physical Shift Au-

thentication (PSA) and Multiple Sensor Consistency Check

(MSCC). Both can be used alone or in combination.

I. Physical Shift Authentication. Despite the limitation of

ultrasound, PSA allows a sensor to send random probing

signals. Thus, it can detect obstacles reliably by checking

whether the received echoes originate from the sensors.

II. Multiple Sensor Consistency Check. MSCC enables

multiple sensors to collaboratively address more advanced

attacks at a system level. It can detect spoofing attacks,

measure distance resiliently, and localize obstacles (both

real ones and attackers). Utilizing two assistant sensors,

MSCC can achieve an improved detection rate.

We envision that the attack methodologies and enhancing

technologies in this paper can provide insights for improving

TABLE I: An overview of attack and defense goals.

Situation Decision under Attack Attacks

w/o obstacles stop moving
random spoofing
adaptive spoofing

w/ obstacles keep moving
jamming

adaptive spoofing

the security and reliability of autonomous vehicles, as well

as ultrasonic sensors in other IoT applications, such as smart

cities, smart home, medical diagnostics, SCADA platforms,

and robot technologies [10], [11].

II. BACKGROUND

In this section we briefly introduce state-of-the-art auto-

mated driving systems and the ultrasonic sensors.

A. Automated Driving System

An autonomous car (a.k.a., driverless car, self-driving car)

is a vehicle that is capable of sensing its environment and

navigating without human input. According to the SAE J3061

report [12], there are 6 levels of driving automation, from no

automation (L0), to driver assistance (L1), partial automation

(L2), conditional automation (L3), high automation (L4), and

full automation (L5). Almost all cars that are at L2 and

above are equipped with at least one type of active obstacle

detection sensors, i.e., ultrasonic sensors, for parking assist.

Tesla model S, as one of the most advanced autonomous cars

in the market, is considered to be at L3 and has already

implemented the ‘Autopilot’ system [3], which consists of

functions like ‘Autopark’ and ‘Autosteer’ that monitor the

surroundings and act accordingly. Research teams such as the

ones at Google [13], Stanford [14], and Tesla Motors [15]

are designing and experimenting fully autonomous prototype

cars, but there is a long way to go before full application.

Nevertheless, different levels of driving automation basically

rely on the same types of sensor technologies, and the insights

gained from analyzing sensors on Tesla can shed light on

future automobiles.

B. Ultrasonic Sensors

Ultrasonic sensors were first introduced to automobiles as

sensors of parking assistance systems in the early 1990s [16].

Ultrasonic sensors detect obstacles by transmitting and re-

ceiving ultrasound, which is one type of mechanical waves

whose frequency is beyond the upper limit of human hearing

(20 kHz). To measure the distance to an object, an ultrasonic

sensor emits ultrasonic pulses (a.k.a. pings), and measures the

time that it takes to receive the reflected pulses (a.k.a. echoes).

Distance to the nearest obstacle is calculated based on the

propagation time (time-of-flight, a.k.a. ToF) of the first re-

ceived echo pulse according to the equation

d = 0.5 · tp · vs (1)

where tp is the propagation time of ultrasonic pulses, and vs
is the velocity of sound in air (343 m/s at 20 ◦C).
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Fig. 1: The position and cross-section of ultrasonic sensors.

Fig. 1 shows an ultrasonic sensor consisting of a plastic

housing, a piezoelectric transducer with an attached mem-

brane, and a printed circuit board with the electronic circuitry

and microcontroller to transmit, receive, and process the

signals. We introduce the main sensing principles and our

concerns as follows.

Piezoelectric Effect. Most ultrasonic sensors on automo-

biles utilize piezoelectric crystals as transducers [17], which

can convert electric charges into mechanical vibrations and

vice versa. For example, if a voltage is applied at the electrodes

of a piezoelectric crystal, a mechanical deformation results and

generates acoustic waves. On the contrary, an incoming acous-

tic wave creates oscillations of the crystal, which generate an

alternating voltage at the electrodes. Note that it takes time for

piezo transducers to emit stable mechanical vibrations, and we

call this delay as start-up time.

Frequency. Ultrasonic sensors on vehicles typically operate

within a frequency band between 40 and 50 kHz, which

has been proved as the best trade-off between acoustical

performance (sensitivity and range) and robustness against

ambient noises. Frequencies higher than 50 kHz will lead

to weaker echoes due to the attenuation of airborne sounds,

whereas for frequencies lower than 40 kHz the proportion of

interfering sound is larger [18]. Unlike speakers, ultrasonic

sensors tend to work at their resonance frequencies and cannot

efficiently transmit wide-band signals.

Distance Measurement. When a sensor receives a com-

mand from the electronic control unit (ECU) to transmit,

its circuit excites the transducer with periodic waves at the

resonance frequency for typically 300 μs, resulting in the

membrane’s vibration and emitting ultrasonic pings. Note that

a transducer cannot listen while transmitting. Even after it

stops transmitting, the sensor cannot receive echoes imme-

diately until after a ring-down time (approx. 700 μs). Thus,

ultrasonic sensors cannot detect objects in their close vicinity.

Once rested, the membrane can be vibrated again by the

echoes, which are converted to analog signals, then amplified,

filtered, digitized, and compared to a threshold to determine

the arrival of echoes.

III. ATTACK OVERVIEW

Before discussing the security vulnerabilities of ultrasonic

sensors and their impact on automobiles, we specify our

assumptions on the threat model, introduce the basic ideas

of our attacks, and summarize the attack categories.

A. Threat Model

In this paper we focus on adversaries that attempt to attack a

vehicle by falsifying the sensors’ output only via the physical

signal channels. We assume their capabilities as follows.

Sensor Assessment. We assume that an adversary is aware

of the underlying principles of the sensor systems, and has

budgets and access to obtain such sensors for assessment be-

forehand. The adversary can acquire the parameters of sensor

designs, e.g., operational frequency, bandwidth, duty cycles,

packet format, etc., and further explore sensor vulnerabilities.

The adversary may be proficient with hardware design, and can

exploit off-the-shelf hardware to accomplish the assessment.

Attack Scenario. The adversary can eavesdrop on the

physical signals from on-board sensors, and actively generate

forged echoes in an arbitrary form (frequency, amplitude,

duration, phase, etc.), thereby corrupting or overpowering

other concurrent physical signals in propagation.

Contactless. An adversary can be anywhere around the

targeted vehicle and is free to move. However, she does not
have control over the targeted vehicle or the on-board sensors.

Moreover, the adversary must stay away from the targeted

vehicle in order to remain stealthy during the attacks, and

cannot make any physical alteration or damage to the sensors.

B. Physical Signal Level Attacks

In this work, we study physical signal level attacks, which

take advantage of the physical sensing channels to disrupt or

manipulate the sensor measurements.

Security Questions. Whether automobiles can make the

right driving decisions in the two scenarios—with and with-

out obstacles—depends on the reliability of sensors and the

vehicles’ pre-programmed logic to react to various situations.

Thus, we would like to answer the following questions in the

presence of physical signal level attacks.

• Will a sensor report the detection of obstacles when there

is none?

• Will a sensor report no obstacle when one or multiple

real obstacles exist?

• Will an automobile handle the output of sensors properly,

especially abnormal sensory data?

• If sensors malfunction under attacks, what defense mech-

anisms can be adopted to cope with them?

Attack Basics. Since ultrasonic sensors emit ultrasounds

to probe their surroundings, we utilize two types of well-

known attacks as our building blocks to seek answers to the

aforementioned questions: spoofing, whereby carefully crafted

ultrasounds are injected so that they appear to come from

non-existing sources and obfuscate real ones, and jamming,

whereby noises are injected simply to interfere with sensors.

1) Spoofing Attacks. Spoofing attacks involve emitting care-

fully crafted signals (e.g., ultrasound pulses) that are

identical to those transmitted by the sensors, i.e., with

the same frequency, modulation, etc. As a result, the

sensors may interpret the spoofing signals the same

way as the authentic signals, and falsely detect non-

existing obstacles. By carefully adjusting the timing of the
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Fig. 2: A typical architecture of active sensor system on

vehicles and the type of attack of interest in this paper. The

‘echo’ marked in red indicates being compromised by attack.

spoofing signals, an adversary may ‘create’ fake obstacles

at various locations of her choice.

2) Jamming Attacks. Jamming attacks involve injecting sim-

ilar but stronger signals to overpower the real ones.

Sensors are typically designed to be robust against benign

ambient noises, but they hardly expect strong interfer-

ence. It is unclear whether sensors can detect objects in

the presence of jamming attacks. In case the interference

is so strong that it causes sensor denial-of-service, it is

also unclear whether sensors and automobiles will fail

gracefully and do not cause fatal accidents.

In the rest of the paper, we study both spoofing attacks

and jamming attacks. Note that the longer the effective attack

range is, the more practical the attacks will be. The effective

range of the attacks relies on both the operational range of

sensors and the transmission power of the attack equipment,

which can be improved with budgets. The goal of this work is

to validate the feasibility of the attacks, and we do not focus

on intentionally maximizing the transmission power, thereby

the reported attack range serves as a reference. In practice,

a motivated attacker can increase the transmission power and

boost the effective attack range.

C. Attack Categorization

Ultrasonic sensors are one type of active sensors that

emit physical signals. To be general, we summarize attack

classification in terms of active sensors. Fig. 2 illustrates the

interaction of active sensors in an automobile. Inside an auto-

mobile, an electronic control unit (ECU) controls several active

sensors, which emit probing pings to measure the environment

and report distance to obstacles, if there are any, back to

the ECU. Then, the ECU will transmit the measurement to

other ECUs via the CAN bus to fulfill functions such as self-

parking. We envision that as measurements are generated and

transmitted from sensors to their ECU or other networked

ECUs, three types of attacks that target at various levels of

sensor systems are possible, which include the following.

1) Physical Signal Level Attacks: Physical level attacks

take advantage of the physical sensing channels to disrupt or

manipulate the analog sensor measurements. PS attacks only

manipulate the surrounding physical environment or ambient

signals, e.g., the echoes in Fig. 2, and do not affect the data

processing path inside sensors.

TABLE II: Experimented stand-alone sensors and results.

Sensor Frequency

Output under attacks

Spoofing
Jamming

Random Adaptive

SRF01 42 kHz Unsteady Steady Min
SRF05 40 kHz Steady Steady Min

MB1200 42 kHz Unsteady Steady Max
HC-SR04 40 kHz Steady Steady Min

JSN-SR04T 40 kHz Steady Steady Min
US-100 40 kHz Steady Steady Min

RCW-0001 40 kHz Steady Steady Min
URM04 40 kHz Unsteady Steady Min
URM37 40 kHz Steady Steady Min

Grove U. R.1 42 kHz Steady Steady Min
Audi Q3 50 kHz Unsteady Steady Max

1 Grove Ultrasonic Ranger.

2) Sensor Hardware Level Attacks: Hardware level attacks

manipulate sensor measurements by affecting how the sen-

sory signals are collected and processed inside sensors. For

example, Foo Kune et al. [19] demonstrate injecting voice

signals into a Bluetooth headset and fake heart beats into an

implantable pacemaker by blasting intentional EMI on the con-

ducting wires inside sensors. Similarly, acoustic interference

has been shown to be able to cause MEMS gyroscopes and

accelerometer to malfunction [20], [21].

3) Digital Level Attacks: Digital level attacks are, by far,

the most well-studied attacks, which include traditional cy-

ber attacks that alter digital information or invade systems

exploiting digital channels (e.g., network interfaces, file sys-

tems, memories). For instance, researchers have demonstrated

attacking automobiles via cellular networks [22] and CAN

bus [23].

Although active sensors can be vulnerable to all three types

of attacks, we focus on physical signal level attacks because

they are unique to active sensors and least studied.

IV. ATTACKING ULTRASONIC SENSORS

Analyzing the vulnerabilities of existing ultrasonic sensors

begins with obtaining a thorough comprehension of their

underlying principles. In particular, we investigate the fre-

quency, period, and modulation schemes of the ultrasonic

probing signals. Then, we design three types of attacks—

random spoofing, adaptive spoofing, and jamming attacks—

to understand whether sensors can detect obstacles reliably

and whether automobiles will cope with abnormal situations

properly. We validated all attacks on 11 models of stand-alone

ultrasonic sensors (in Table II) in the laboratory. We also tested

7 models of vehicles (in Table III) outdoors.

A. Analyzing Sensors

To analyze the probing signals, we acquired 11 models of

stand-alone sensors, and one of them is an OEM parking

assistance system consisting of one ECU and four sensors,

which is the same as the one on one of our tested vehicles.

All of them report the distance to the closest obstacle if there

is any within the detection range.
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TABLE III: Experimented vehicles and results.

Model Manufacturer
Sensor Number Vulnerable

to attacks1

Front Rear

Q3 Audi 4 4 Yes
Model S Tesla 6 6 Yes
Tiguan Volkswagen 0 4 Yes
Polo Volkswagen 0 4 Yes

Fiesta Ford 0 3 Yes
Carnival Kia 0 3 Yes

GLK 260 Mercedes-Benz 6 4 Yes

1 All types of attacks include spoofing and jamming.

Methodology. From the public domain, we only learn that

ultrasonic sensors operate in the range of 40 kHz to 50 kHz. To

obtain details of the probing signals, we carried out two types

of analysis. (a) Tapping into the signal pathway. The basic idea

is as follows. Applying alternating voltages on piezoelectric

crystals generates acoustic waves (i.e., mechanical oscillation),

and the frequency and amplitude of the AC input signals

determine the ones of the acoustic waves. Thus, analyzing the

AC signals will reveal insights of the probing signals, and we

manage to use oscilloscopes to intercept the periodic waves

that drive the piezoelectric crystals. (b) Sampling over the air.

Recording the emitted ultrasound directly will enable time and

frequency domain analysis. However, generic microphones and

ultrasonic sensors cannot record ultrasound that might spread

tens of kHz. In the end, we used an off-the-shelf free field

measurement microphone [24] (covering 4 Hz – 90 kHz) to

sample the ultrasound, and it outputs electrical signals that can

be fed into an oscilloscope, spectrum analyzer, or smartphone

application for further analysis.

Probing Signals. Both methodologies reveal the same find-

ings on sensors: The probing pings are of the form of square

waves with a constant amplitude, frequency, and duration. Due

to the short duration of each ping (e.g., 300 μs) and physical

delays, ultrasonic sensors do not employ any modulation

schemes.

Probing Periods. We discover that sensors emit probing

signals periodically with two sensor algorithms (SA) illus-

trated in Fig. 3: (a) SA1, periodic according to the first echo

and (b) SA2, periodic according to probing signals. Most of

the tested stand-alone sensors work as SA1 and wait a fixed

amount of time, T1, either after the first echo or a timeout to

transmit the next probes. All sensors on the tested automobiles

are SA2 and transmit one ping every T2, regardless of whether

an echo occurs. This is because a vehicle ECU triggers

multiple sensors in a predefined order.

B. Random Spoofing Attacks

Random spoofing attacks randomly replay the previously

recorded sensor signals hopefully at the right timing to deceive

sensors, and do not try to cancel the sensor signals received at

this moment. Such attacks can at most delude the sensors to

report a forged obstacle that is closer than any real obstacles.

We formalize the signals received by a sensor under random

spoofing attacks as

Υi = Ψi(τ0) +

N∑
n=1

Ψ∗
j (τn) (2)

Fig. 3: Two probing algorithms: SA1 emits a probe after T1

from the first echo. SA2 emits a probe periodically by T2.
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Fig. 4: An illustration of all ultrasonic attacks. The waveforms

show signals a sensor receives in one sensing cycle, under

no attacks, random spoofing, adaptive spoofing, and jamming

attacks respectively.

where Ψi(τ) is the echo of the ith cycle received after time τ0,

Ψ∗
j (τn) is a spoof signal replayed based on a previous cycle j

(j < i) and received after time τn, and N is the total number

of spoof signals. An illustration of Υi is shown in Fig. 4.

Random Spoofing Timing. Since the nearest obstacle is

the most important one to automobiles, only the first received

echo signal is reported by sensors. If there is no obstacle

nearby, the sensors will wait for a predefined timeout duration

T0, before starting the next cycle. T0 is determined by the

sensing range. Sensors only expect to receive echoes that are

reflected from any obstacles within a sensing range. For a

2-meter range, T0 is nearly 11.7 ms. Thus, for an effective

attack, the spoof signals have to be received before the real

echoes and within the timeout slot, whichever is sooner, i.e.,

min({τn}n∈[1,N ]) < min(τ0, T0) must be satisfied.

Building a Random Spoofer. To validate spoofing attacks,

we acquired ultrasonic transducers whose working frequencies

are the same as the ones of the target sensors. To drive the

transducers, we utilize two types of off-the-shelf hardware: an

Arduino [25] or a function waveform generator. Arduinos can

output square waves of selected frequencies on the digital I/O

pins using a built-in function named Tone(), which is mainly

used to generate tones for speakers. Due to its low-cost nature,

Arduino cannot generate a perfect periodic signal without any

frequency jitters. Nevertheless, the generated square waves are

sufficient for driving ultrasounds. In comparison, a function

generator outputs signals with more stable frequencies and

higher amplitudes.

Results. Random spoofing attacks can decrease the values
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Fig. 5: Two types of spoofing attacks. The black circles are

genuine obstacles and red dashed ones are fake obstacles that

can be created by attackers.

of sensor measurement. We validated the random spoofing

attacks on stand-alone and on-board sensors. For both cases,

we can create a forged obstacle that is closer than real

obstacles, with slightly different observations.

1) Stand-Alone Sensors. For most stand-alone sensors that

adopt SA1, by selecting a spoofing period that is larger than

T1 and smaller than T1 + T0, we were able to ‘create’ a non-

existing obstacle that appears to be stationary on the sensor

measurement. This is because the stand-alone sensor transmits

the next probe after waiting for T1 since the first received echo.

If we emit a spoof signal at the period of T1 + 2d/vs, where

vs is the speed of sound, the sensors will output a constant

measurement of distance d.

2) On-Board Sensors. By emitting spoof signals once every

few milliseconds, we managed to make the automobiles report

obstacles that did not exist, which kept causing alarms on all

tested vehicles in Table III, and forced a moving Tesla Model S

to stop in self-driving mode. The attacking distance was up to

2 meters when powered with an Arduino, and can be increased

with higher transmission power. Since a vehicle ECU triggers

each sensor periodically as SA2, random spoofing is unable to

synchronize strictly with the pings, thus the imaginary obstacle

appears to be moving on the sensor measurement. We observed

the unsteadiness in various ways: an obstacle jumped back and

forth between two locations; an obstacle appeared suddenly at

random locations, as shown in Fig. 9(b). Nevertheless, none of

the tested vehicles consider such abnormal results suspicious

or warn drivers accordingly.

C. Adaptive Spoofing Attacks

A random spoofing attack cannot always precisely control

the location of the spoofed obstacle and can at most create

obstacles closer than the real ones. Thus, it can at most

cause an automobile to stop unnecessarily. The goal of an

adaptive spoofing attack, however, is to create a non-existing

obstacle at an arbitrary yet stationary distance reliably, either

closer (subtractive) or farther away (incremental) than the real

one. Thus, it may cause an automobile to collide into a real

obstacle, as illustrated in Fig. 5. To simplify the discussion,

we assume that the adaptive spoofer is a real obstacle itself.

Fig. 6: The disguised Arduino-based adaptive spoofer and

incremental spoofing results on sensor SRF01. The adaptive

spoofer mimics a moving-away obstacle by increasing the

delay to transmit after receiving the sensor probe.

Adaptive Spoofing Timing. To forge a stationary obstacle

at any distance d for even SA2 sensors, the adaptive spoofer

has to transmit a spoof signal at the right timing, i.e., the sensor

has to receive the spoof signal after a delay of 2d/vs since

the transmission of probing pings, where vs is the speed of

the sound. Thus, an adaptive spoofer has to listen and adjust

to the concurrent sensor signals adaptively, and eliminate the

existing echoes for incremental distance. As such, adaptive

spoofing attacks will involve three phases: (a) receiving sensor

signals, (b) eliminating the echoes, and (c) transmitting the

spoof signals. Similarly, the signals received under adaptive

spoofing are

Υi = Ψi(τ0)− αΨi(τ0 + δ) + Ψ∗
i (τ1) (3)

where α is the index of signal cancellation and δ is the time

delay introduced by real-time processing.

Since on-board sensors are typically triggered periodically,

an adaptive spoofer can calculate and predict τ1 by first

measuring its distance to the sensor. Eliminating the echoes

is not required when the imaginary obstacle is closer than the

real obstacle, i.e., τ1 < τ0. However, in order for τ1 > τ0,

echo elimination is necessary with proper α and δ. Acoustic

quieting [26], [27] is a technique to cancel acoustic signals,

and is well developed for stealth military submarines [28]

as well as commercial noise cancelling headphones [29].

All these techniques can be utilized to eliminate echoes.

In our implementation, we adopt a simple yet convenient

method: we wrap the adaptive spoofer with sound absorbing

materials (e.g., damping foams) and only expose the ultrasonic

transducer in the air. The damping foams can passively absorb

sound such that the reflected echoes are too weak to be

detected by the sensors.

Building an Adaptive Spoofer. An adaptive spoofer has to

be both a transmitter and receiver. We built an adaptive spoofer

out of two ultrasonic transducers, amplification circuits, a

buffer amplifier, an envelope detector, and an Arduino board.

The adaptive spoofer listens to sensor signals, and controls

the timing for emission. Meanwhile, we attached the adaptive



IEEE INTERNET OF THINGS JOURNAL 7

spoofer onto a traffic cone and wrap it with damping foams,

as shown in Fig. 6.

Results. Adaptive spoofing attacks can decrease or increase

the measured distances. We were able to create a stationary
imaginary obstacle for both stand-alone and on-board sensors,

and even manipulate its movement. The spoofer can be placed

anywhere within the sensor’s working range (normally a few

meters). For demonstration, we place the adaptive spoofer

20 cm away from the sensor, and create an imaginary obstacle

that is gradually moving away from the sensor. In particular,

the spoofer will transmit a spoof signal with a delay of

2nTvo/vs (n = 0, 1, 2, ...), where vo is the speed of the

imaginary obstacle, n is the echo sequence, and T is the

sensing period. Fig. 6 shows the distance measured by a

victim sensor under adaptive spoofing attacks—it illustrates

the effectiveness of our attacks.

D. Jamming Attacks

Jamming attacks generate ultrasonic noises that induce con-

tinuous vibration on the sensor membrane, and render distance

measurement impossible. The goal is to cause a sensor fail to

detect real obstacles, which may cause collisions.

Jamming Parameters. A jamming attack continuously

emits ultrasounds towards a sensor such that the jamming

signals overwhelm the echoes, as shown in Fig. 4. The signals

received under jamming attack are

Υi = Ψi(τ0) +

∫ T0

0

A cos(ωt) (4)

where A is the jamming amplitude and ω is the frequency.

Resonant Frequency. From our measurement on several

vehicles, we found that the operation frequency appears to be

near 50 kHz. In practice we used off-the-shelf 40 kHz trans-

ducers for jamming because 50 kHz ones were unavailable.

Since ultrasonic transducers operate around a narrow band, the

40 kHz transducer cannot emit 50 kHz ultrasounds efficiently.

Nevertheless, 40 kHz turned out to be effective, and we believe

the effective range could be expended with 50 kHz transducers.

Voltage Level. The amplitudes of sounds created by piezo-

electric crystals rely on the voltage level of the signals that

drive the crystals. Thus, the effective jamming distance is

determined by the applied voltages. In our experiments, we use

two types of equipment. Arduino can generate square waves

with 5 volts maximum, and the function generator outputs up

to 20 volts. The ultrasonic transducers that we obtained can

take up to 70 volts, and we believe the effective attack range

can go beyond what we observed.

Results. We have validated jamming attacks in the following

three types of scenarios: (1) stand-alone ultrasonic sensors, (2)

cars with parking assistance, and (3) a Tesla Model S with self

parking and summon. In all experiments, a real obstacle exists,

and it can be detected by the sensor when there is no attack.

1) Stand-Alone Sensors. Under jamming attacks, we ob-

served two types of sensor outputs: minimum distance—the

sensor reports an obstacle at its minimum detection distance

(0 – 10 cm in our case), and maximum distance—the sensor

detects no obstacle. We believe that two types of sensor design

Fig. 7: Ultrasonic experiment setup on a Tesla Model S. A is

the jammer, B is 3 sensors on the left-front bumper.

 Normal Weak Jamming Strong Jamming

ping echoes

TOF: normal TOF: normal TOF: maximum

Increased
noise floor

Saturated
noise floor

Fig. 8: Raw sensor signals showing noise suppression and the

Maximum Distance result under strong jamming.

lead to these two results. For minimum distance, a sensor

will consider the existence of an obstacle if the amplitude

of received ultrasounds is larger than a predefined threshold.

Under jamming attacks, once the sensor passes the ring-

down period, it will receive the jamming signal and consider

it as echoes from obstacles, resulting in minimum distance.

For maximum distance, the sensors are designed to suppress

ambient noises by adjusting their thresholds according to the

noise level, as shown in Fig. 8. By tapping into the signal path

of sensors, we realize that our jamming signal is recognized as

noise, and to suppress the ambient noise, the sensor raises the

threshold. As a result, the amplitude of the legitimate echoes

is smaller than the threshold, thus the sensor cannot detect any

echoes and reports maximum distance (i.e., no obstacle).

2) Vehicles with Parking Assistance. Next, we examined a

few vehicles with driver assistance systems listed in Table III.

The driver assistance systems on these cars all inform the

driver about obstacles vocally or visually. As shown in Fig. 7,

an ultrasonic jammer is placed in front of the car bumpers

and can be detected. Once a jamming attack is launched, the

vehicle can no longer detect the obstacle and no alarm is

triggered (Fig. 9(c)). We believe that this maps to the maximum
distance case and the design of these sensors aims at noise

reduction. Using a function generator, we can effectively attack

a moving Tesla from up to 10 meters away.

3) Tesla Model S with Self-Driving. We further tested

jamming attacks on the Autopark and Summon features of

Tesla Model S. We were wondering whether jamming attacks

can prevent automatic parking systems from detecting the

obstacles reliably. The results we observed turned out to be
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(a) Real distance. (b) Spoofed distance. (c) Jammed distance.

Fig. 9: The dashboard on Tesla Model S showing distance to

a nearby obstacle under (a) no attack (the distance is real), (b)

spoofing attack (the distance is falsified), (c) jamming attack

(the distance is maximum and not displayed).

prominent and worrisome.1 When the Tesla is jammed in self-

parking or summon mode, the car moving by itself will ignore

obstacles and collide with them. The attack range is 1 meter

when the jammer is driven by a function generator, and it

could be increased excessively with power amplifiers.

E. Summary

In summary, we validated the following attacks.

• Random spoofing attacks can create imaginary obstacles

that are closer to an ultrasonic sensor than real obstacles.

Although the forged distance may change constantly and

unrealistically, it can force a moving autonomous vehicle

to stop when it should not.

• Adaptive spoofing attacks can create imaginary obstacles

that are either closer or farther away than the real ones at

predetermined distances. The attacks can force a moving

vehicle to stop when it should not, or not to stop when

it should.

• Jamming attacks can prevent ultrasonic sensors from

detecting obstacles, and cause vehicle collisions.

V. ENHANCING ULTRASONIC SENSORS

We design defense enhancement strategies that can cope

with spoofing and jamming attacks against ultrasonic sensors,

and aim at achieving the following levels of functions.

1) Attack Detection. At minimum, the defense strategies

should be able to detect and report the attacks, thereby

drivers or the self-driving systems can react to the attacks

properly.

2) Resilient Obstacle Detection. Despite the spoofing at-

tacks, the enhanced algorithm should be able to identify

the spoofed echoes from real ones, and report the real

distance.

3) Attacker Localization. The most challenging task is to

localize the attackers. We believe the location information

of an attacker can help a driver or the self-driving system

to cope with the attacks, and can be used in forensics.

As illustrated in Fig. 2, an existing ultrasound-based ob-

stacle detection system consists of a set of ultrasonic sensors

(from 3 to more than 12) and an ECU. Thus, our enhancement

includes two types of schemes:

1We demonstrate with a video on https://youtu.be/r4vS7YhT3DI.

TABLE IV: An overview of the defense scheme functions.

Attacks
PSA MSCC

D 1 R 1 L 1 D R L

Random Spoofing
√ √ × √ √ √

Adaptive Spoofing 2 –
√ √ × √ √ √

+ × × × √ √ √
Jamming

√ √ × × × ×
1 D: Attack Detection, R: Resilient Obstacle Detection, L: Attacker

Localization.
2 The ‘–’ and ‘+’ indicate subtractive and incremental attack results.

1) Physical Shift Authentication (PSA) based method that

allows each individual sensor to detect attacks and to

perform resilient obstacle detection.

2) Multiple Sensor Consistency Check (MSCC) based

method that enables a set of ultrasonic sensors to col-

laboratively achieve the aforementioned functions.

We summarize the functions of each scheme against differ-

ent attacks in Table IV. The schemes individually may not be

able to protect the sensor system against all types of attacks,

but their combination, as part of our systematic strategies, can

enhance the reliability of the overall system, which we will

discuss later.

A. Physical Shift Authentication

Physical Shift Authentication authenticates physical signals

by shifting the waveform parameters. Essentially, physical

signal level attacks are possible because ultrasonic sensors

transmit pings of the same waveform throughout their lifetime

and search for only the first echo via energy-based detection,

i.e., detecting any ultrasonic signals whose amplitude is higher

than a threshold. Thus, there is no bond between a ping

and its echoes. To detect attacks and possibly reject spoofed

echoes, it is important to bind them. As such, we propose a

challenge-response scheme by customizing the ping waveform,

then correlating the received echoes with the pings. A simple

procedure of PSA can be summarized as:

Step 1. Randomize the ping waveform X. Transmit.

Step 2. Receive. Measure the echo waveform Y.

Step 3. If C(X,Y) < α, reject the echo.

where X = [x1, x2, ..., xn]
T ∈ R

n is a vector of n selected

waveform features, Y = f(X) = [y1, y2, ..., yn]
T ∈ R

n is a

vector of n received waveform features, and f ∈ R
n×n is a

conversion function. C is a function that determines the corre-

lation of the waveforms, and α is a threshold. Our hypothesis

is that the waveform of real echoes should be correlative to the

prior ping, however, a waveform YA from a passive attacker

who does not know X will likely fail the challenge. Therefore,

our approach in designing PSA is twofold: 1) examining the

feasibility of physical signal authentication on ultrasound, and

2) detecting spoofed echoes and real ones.

A unique challenge we face, is that ultrasonic sensors

receive real echo signals with unknown parameters, even

when the transmitted signals are well-known and tuned. For

example, the probing signal is typically

s(t) = cos(ωct), t ∈ [0, T ] (5)
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where ωc is the carrier frequency, and T is the time duration.

After reflection, the received signal becomes

r(t) = a cos((ωc+ωD)(t−τ)+θ)+n(t), t ∈ [τ, τ+T ] (6)

where a represents signal attenuation, ωD is the Doppler shift,

θ is a phase shift, n(t) is the additive noise component, and

τ is the time delay (proportional to the round-trip distance

to the obstacle), all of which are unknown and dependent

on the environment. There are sonar applications where the

signal frequency, amplitude, phase, and the analog waveform

are measured or estimated for advanced target measurement

and identification [30]. However, it remains unknown whether

these physical parameters can be used for signal authentica-

tion, especially when they include uncertainty after reflection.

To examine the feasibility of modulating these parameters,

we choose amplitude, frequency, phase, and ping duration as

candidates for the waveform feature xk. Formally, we consider

a sequence of customized pings, and let the waveform of the

ith ultrasonic ping be

si(t) = Ai cos(2πfit+ ϕi), t ∈ [

i∑
j=1

Δj ,

i∑
j=1

Δj + Ti] (7)

where Ai is the amplitude, fi is the frequency, ϕi is the phase,

and Ti is the duration of the ith ping. Δi is the period, i.e., the

time period between the ith and (i− 1)th ping (let Δ1 = 0).

On existing sensors, all these waveform features are always

constants, and pings are transmitted periodically with a fixed

period Δ. In our experiments, we change each feature xk

independently, and seek for correlation in the reflected echoes.

Ultrasonic transducers inherently have physical delays as

start-up and ring-down period [31]. Even if the signals that

drive the sensors have constant amplitude, frequency and

phase, during these special periods, the amplitude and fre-

quency of the emitted ultrasound are unstable. Given that the

duration of each ping is short and typically lasts for 8 to

20 cycles of sinusoid, it is impossible to modulate all these

parameters efficiently within each ping. Thus, we prefer to

modulate the waveform as per ping instead of within each
ping, i.e., each ping will have a constant amplitude, frequency,

duration and at most one phase shift, but they may be different

between consecutive pings.

We define the process of transmitting the ith ping and

receiving the following echoes as the ith cycle. We envision

that the authentication of received waveform feature yk can

be done in two ways depending on the type of transmitted

waveform feature xk, as

a) Per single cycle, where yk(i) is received if and only if

xk(i) has been transmitted, i.e., yk(i) ⇔ xk(i).
b) Per consecutive cycles, where receiving a sequence of

yk implies that a sequence of xk has been transmitted,

i.e., {yk(i), yk(i + 1), ..., yk(i + m)} ⇒ {xk(i), xk(i +
1), ..., xk(i+m)}

The first case corresponds to those xk that do not change

dramatically during one cycle, possibly frequency and phase.

The second case can be applied when xk is highly dependent

on the environment and reflecting surface, possibly amplitude

and ping duration. Our experiments focus on examining the

feasibility of employing the proposed xk candidates for the

above cases, i.e., whether they can be used for PSA and how

to use them.

Although ideas similar to PSA have been tested on RF

signals, its feasibility on ultrasonic sensors in automotive

applications still remains unanswered. We ask the following

questions: (a) Can we reliably modify the amplitude Ai,

frequency fi, phase ϕi, duration Ti, and period Δi of each

ping? (b) Once the waveform of a ping is modified, will

the corresponding echo change proportionally to the ping?

(c) How reliably can we differentiate the modulated echoes

with the spoofed echoes from a passive attacker?

To answer these questions, we use the following experiment

setup. We set two ultrasonic transducers—one transmitter

driven by a signal generator and one receiver connected to

an oscilloscope—side by side toward an obstacle close by.

The reflected signals can be observed and measured on the

oscilloscope after amplification. We analyze the feasibility of

each xk candidate in the next few sections.

1) Frequency Shift: We ask the following questions for

frequency shift: Can sensors create ultrasounds at various fre-

quencies? Will reflection on an obstacle modify the frequency

randomly?

Frequency Range. Since ultrasonic sensors can only emit

ultrasounds in a narrow frequency band centered at their

resonant frequencies determined by the diameters of the

piezoceramics, we first measure the frequency response of a

transducer. In this experiment, we place a wide-band micro-

phone [24] 10 cm away from an ultrasonic transducer as we

sweep the frequency of the stimulation signals from 35 kHz to

45 kHz. We plot Sound Pressure Level (SPL) of the received

signals in Fig. 10(a). As the frequency of the stimulation

signals deviate from the resonant frequency (40 ± 1 kHz),

the SPL of the received ultrasounds reduces. To ensure the

detection range of an ultrasonic sensor, it is reasonable to

choose frequencies from 38.5 kHz to 41.5 kHz.

Obstacle Reflection. The start-up time varies for different

transducers, but it is generally larger than the typical ping

duration (8 to 20 cycles of sinusoid). We set the duration

of each ping to 100 cycles (2.5 ms at 40 kHz) so that

the frequency is stable, and unaffected by the start-up/ring-

down period. Fig. 10(b) shows that when the obstacle is

stationary, the frequencies of echoes are close to the ones of

the stimulation signals, with a maximum frequency deviation

of 0.212 kHz in the band from 39 kHz to 41 kHz. When the

vehicle or obstacles are moving, the received echoes can be

Doppler shifted. For example, a relative speed of 15 km/h can

lead to a Doppler shift of 0.48 kHz. However, it can be solved

by compensating the Doppler shift as a constant bias, due to

the fact that it changes very little between two cycles (20 ms).

We envision that fi can be shifted randomly between

different pings, and the authentication can be done per ping,

by checking if y(i) = x(i).
Anti-Jamming. A similar idea of frequency hopping can be

used to resist signal jamming, where the ultrasonic frequency

is changed frequently according to a predetermined schedule.

When the jammer signal strength isn’t so strong that it

saturates the receiver front end, advanced DSP techniques can
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Fig. 10: The experimental results of physical authentication schemes.

be used to estimate and cancel the effects of the jamming

signal.

2) Amplitude Shift: The strength of received echoes de-

pends on the transmission power, distance to, and surface

of the obstacle. We place an obstacle 50 and 100 cm away

from the emitter and the receiver, and experiment with three

obstacles that are common on the road: a plastic bollard, a

plastic pyramid cone floor sign, and a metal board (to mimic

a car body), which are referred to as the pole, the pyramid,

and the board in Fig. 10(c).

As shown in Fig. 10(c), the amplitudes of received signals

increase with the transmitted signals (strong signals are clipped

by the amplifiers at 5V), and different obstacles at different

distances show various attenuation. From our observation,

the conversion function of amplitude can be approximated

as y(i) = f(x(i)) = λx(i), where λ is a constant for a

certain stationary obstacle. For a moving obstacle, we assume

λ remains constant in one cycle period (20 ms). Although it is

difficult to verify echoes in per single cycle, we can transmit

consecutive pings (e.g., two) with different amplitudes and

measure their echoes. If the amplitude attenuation of all pings

exhibits the same linearity, then all these echoes should be

valid. In comparison, signals from a random spoofer will not

obey this rule.

3) Duration Shift: We change the duration of each ping,

i.e., Ti. Since ultrasound tends to attenuate quickly over the

air, the minimum duration of each ping has to be long enough

so that the corresponding echoes can be detected, e.g., more

than 20 cycles (0.5 ms at 40 kHz) for the cases shown in

Fig. 10(d). As we increase the duration beyond its minimum

limit, the duration of received echoes are approximately linear

to those of the corresponding pings. Empirically, it can be

modeled as y(i) = f(x(i)) = λx(i) + υ, where λ and υ are

constants for a certain obstacle. Similar to amplitude shift, it is

reasonable to emit consecutive pings (e.g., three) with various

duration and examine the consistency of linearity.

4) Phase Shift: Because ultrasounds are essentially me-

chanical vibration, we cannot change their phases immediately,

i.e., not in the same way as how radio signals change. Physical

laws require time to dampen a vibrating membrane and then

drive it into the new phase. To understand this, consider a

phase shift (e.g., 180◦) as a sudden shift of force direction

on the vibrating membrane of a transducer. When the force

is shifted to a reverse direction, the membrane gradually

decreases the amplitude and then increases following the new

phase. Fig. 10(e) illustrates this phenomenon.

To validate whether we can perform an arbitrary phase

shift, we performed the following experiments. We drive

the ultrasonic transmitter with a vector signal generator [32]

capable of phase modulation, and measure the phase shift of

the amplified echoes on an oscilloscope. Suppose the phases

before and after phase shift are ϕA and ϕB . To obtain the

phase shift |ϕA − ϕB |, we introduce a reference signal with

phase ϕR on another channel of the oscilloscope, measure two

phase differences ϕA − ϕR and ϕB − ϕR, and subtract the

results. As shown in Fig. 10(f), the received phase shifts are
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TABLE V: Comparison of different waveform parameters.

xk N PSA Features Real Attack

f 1 |y(i)−x(i)| ≤ εf > εf
A 2 |y(i+1)− y(i)

x(i)
x(i+1)| ≤ εA > εA

T 3 |y(i+2)−y(i+1)−λ[x(i+2)−x(i+1)]| ≤ εT > εT
ϕ 1 |y(i)−x(i)| ≤ εϕ > εϕ

1 λ =
y(i+1)−y(i)
x(i+1)−x(i)

close to the modulated phase shifts, i.e., y(i) ≈ x(i). Similar

to frequency shift, phase shift authentication can be achieved

per single cycle.

5) Period Shift and Speed Filter: Period shift is designed as

a supplement to the above schemes. Its motivation is to identify

attacks by the instability of spoofing results. It requires the

sensor to repeatedly probe for two or more consecutive cycles,

and measure the difference in distance estimation between

cycles. Intuitively, if a sensor and obstacle are relatively still,

the distance measurement in different cycles should be almost

the same. If either party moves, the relative speed can be

calculated from the displacement per period. By shifting the

probing period, we can increase the time jitter caused by spoof

signals from random or subtractive adaptive spoofers, and filter

out obstacles that appear to move at unrealistic speed. For

example, consider a sensor that probes every 20 ms and covers

a range of 3 meters. A spoofer that induces 1 ms jitter on the

ToF will cause a distance offset of roughly 17 cm. However,

moving 17 cm in 20 ms indicates a relative speed of 8.5 m/s

(30.6 km/h), which is unlikely and should be rejected.

6) Performance Evaluation: Above experiments validate

that shifting frequency, amplitude, duration, phase, and period

can be used for distinguishing spoofed echoes that does not

change in accordance with the modulated pings. To evaluate

and compare the performance of each scheme, we propose

a basic prototype that employs the features in Table V to

validate echoes in N cycles. εk is the detection threshold for a

specific feature xk. Generally, we perform binary detection by

considering feature values below εk as real echoes and those

above as from attackers.

We calculate feature values with selected raw data2 in

Fig. 10, and plot the cumulative distribution function for each

scheme in Fig. 11. In our case, with a confidence interval

of 95% (True Negative Rate), the thresholds are: εf = 0.18,

εA = 0.25, εT = 0.19, εϕ = 20.42. Attack detection rates

under these thresholds are: αf = 87.1%, αA = 90.0%,

αT = 87.3%, αϕ = 77.3%.

To better understand the performance, we plot the ROC

curves in Fig. 12, and require the authentication to be finished

in no more than three cycles. Under the same time efficiency,

the performance ranks as: Frequency Shift > Phase Shift >
Amplitude Shift > Duration Shift. Especially, two cycles of

frequency shift will outperform two cycles (minimum require-

ment) of amplitude shift, with a detection rate of 98.35% under

5% false positive rate. The detection rate can be increased

to 99.8% with three cycles of frequency shift, and even

further with wider transducer frequency range. In addition,

238.6 kHz ≤ f ≤ 41.4 kHz; AT ≥ 5 V, AR < 5 V; T ≥ 0.5 ms.
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Fig. 11: Cumulative Distribution Function (CDF) of PSA

feature errors.

a sensor may employ multiple schemes interchangeably for

higher security.

7) Likelihood Ratio Detector: The above basic prototype is

based on N cycles of measurements, and it can be improved

by considering more past measurements. Given the received

signal, R, and the ultrasonic sensor, S, the task of attack

detection is to determine whether R originates from S. We

propose one general approach with likelihood ratio test, which

exploits prior knowledge of statistical descriptions of data to

choose amongst a candidate set of populations. The test is

based on likelihood ratio, which expresses how many times

more likely the data are under one model than the other. We

restate the attack detection task as a basic hypothesis test

between

H0 : R originates from the sensor S.

and H1 : R does not originate from the sensor S.

The optimum test to decide between these two hypotheses is

a likelihood ratio test given by

Λ =
p(R|H0)

p(R|H1)

{
≥ c accept H0

< c reject H0

(8)

where p(R|Hi), i = 0, 1 is the conditional probability density

function of the observed signal R when the hypothesis Hi

is true. c is the decision threshold for accepting or rejecting

H0. The task can be solved with a right probability model of

feature value distribution, and we will not discuss here.

B. Multiple Sensor Consistency Check

We present an ECU algorithm that can achieve resilient

obstacle detection and attacker localization based on a single-

transmitter multiple-receiver sensor structure, where at a time

only one sensor transmits and multiple sensors (three or more)

receive, and check the consistency of measurement. Since
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different PSA parameters in no more than 3 cycles.

modern vehicles are typically equipped with multiple sensors,

they can support MSCC-based defense strategy. The basic idea

of the scheme is to utilize the redundancy information from

different sensor positions to detect the inconsistency caused

by the spoofer. In particular, an ultrasonic transducer emits

ultrasound beams in the shape of a torchlight, which exhibits

an emission angle (e.g., 60◦ for [33]). Thus, as a spoofer emits

a forged echo, multiple sensors may receive it, and combine

their measurement to check consistency, thereby reject the

spoofed echoes and accept the real ones.

In summary, depending on the number of sensors that can

overhear the echoes, the ability of this algorithm is as follows:

• Two sensors. MSCC cannot detect attacks, but can local-

ize obstacles no matter real or fake.

• Three or more sensors. MSCC can detect attacks, esti-

mate the distance to obstacles resiliently under random

and adaptive spoofing attacks, and localize the attacker.

1) Regular MSCC and Enhanced MSCC: Since the detec-

tion rate of MSCC depends on the available number of sensors,

we design two sensor layouts to support MSCC algorithms:

a regular MSCC and an enhanced MSCC. A regular MSCC

contains N sensors that are evenly distributed on the front

and rear of an automobile, e.g., a 200 cm line. The enhanced

MSCC adds two more Assistant Sensors (AS) beside each of

the N sensors. As shown in Fig. 13(b), A3 and A4 are placed

5 cm away from the original sensor S2. Assistant sensors do

not transmit, instead, they receive echoes and detect attacks

based on the MSCC method.
2) Localizing Obstacles: The underlying principle of

MSCC based scheme is to localize obstacles with a pair of

sensors, as illustrated in Fig. 14(a). In one sensing cycle, only

one sensor (e.g., SA) transmits, while both sensors receive and

measure ToFs. SA’s output tA is the ToF from SA to and from

the obstacle, while SB’s output tB is the ToF from SA to the

obstacle and then to SB . Consider the case that the obstacle

is farther to SB than SA by ΔD = (tB − tA) · vs, where vs is

the speed of sound. According to the measurement of SA, the

possible location of the obstacle is a circle of a radius tA ·vs/2
centered at SA. According to the difference between tB and

tA, the possible location is on a branch of hyperbola with foci

SA, SB , and vertex distance 2a = ΔD. Thus, the true location

of the obstacle is the intersection of the two curves.

I I I I

II II II

III III

IV

S1 S2 S3 S4

O1

(a) Regular MSCC.

S1A2 S2A3 A4 S3A5 A6 S4A7

(b) Enhanced MSCC.

Fig. 13: Simulation layout for two MSCC schemes. The

detection area (shaded) is enlarged with enhanced MSCC.

SASB

O

(a) Localization.

SASB SC

O

(b) Resilient Detection.

Fig. 14: Illustrations of MSCC scheme principles.

3) Resilient Obstacle Detection: Let two sensors each

transmits for one cycle, we can obtain two location estimations

of an obstacle. If the obstacle is real, the two estimation should

be almost the same. In the presence of a random spoofer or a

subtractive adaptive spoofer who do not adjust to the timing of

probing signals, the difference between two estimations will

be distinct. However, an incremental adaptive spoofing attacker

adds a constant delay as soon as receiving the probing signals,

and will create the same estimations in each cycle. Thus,

two sensors are insufficient to detect incremental adaptive

spoofing attacks. MSCC scheme aims to solve this problem

by introducing a third sensor SC in Fig. 14(b).

Consider a MSCC structure with three sensors. Since one

sensor pair will provide one location, two pairs will provide

two. When sensor SA transmits, all three sensors receive and

output ToFs: tA, tB , and tC . Likewise, given tA and tC , the

potential location of the obstacle is on the hyperbola with foci

SA, SC , and vertex distance 2a = (tC − tA) · vs. Now the

circle centered at SA with r = tA · vs/2 will intersect with

two hyperbolas at two points, i.e., two locations.

We then check the obstacle locations. If echoes are reflected

from a real obstacle, the radius tA · vs/2 will be the real

obstacle distance dAO. Thus, the two locations will coincide

at obstacle O. However, if O is a spoofer emitting ultrasound

actively, the two locations will be distinct as tA is spoofed (as

the red circles show). Given the ToFs from a basic triple-sensor

MSCC structure, any attempt to spoof the sensors translates

into the inconsistency of localizations in one sensing cycle. By

filtering out the inconsistent obstacles, we can achieve resilient

obstacle detection.
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Fig. 15: Simulation results showing that detection rate can

be increased with enhanced MSCC, more sensors and larger

transducer angle.

4) Localizing Attacker: Notice that the spoof signals are

emitted at the same time from the attacker but received by

multiple sensors at different time. The ToF is determined

by the geographical layout of sensors. Thus, for a stationary

emitter (i.e., the spoofer), the two hyperbolas in Fig. 14(b) is

fixed, and their intersection O is the location of the spoofer

no matter what the spoofed tA is. This method is also known

as multilateration in radio navigation systems.

5) Evaluation: To validate the effectiveness of MSCC

method, we implemented the algorithm in MATLAB, and

studied both the regular MSCC and enhanced MSCC designs.

We randomly set an attacker in a 200× 200 cm region ahead

of the sensors, as shown in Fig. 13. We assume the attacker

is aimed perpendicularly to the sensor plane, and has the

same transducer angle as the sensors for performance trade-

off. The dashed lines indicate the limits of sensor transmis-

sion/receiving, and divide the region into areas by the number

of sensor overlap. Since the attacker can only be detected

and localized with three or more sensors, our scheme will

detect attackers above the blue margin. The enhanced MSCC

design enlarges the detection area (shaded blue) by 3 times.

Moreover, as shown in Fig. 15(a), the enhanced MSCC (the

4 triples) dramatically improves the detection rate when the

attacker is close, comparing with the same number (12) of

evenly distributed sensors. In addition, Fig. 15(a) and 15(b)

together show that the detection rate can be raised by enlarging

the detection area, through either increasing the sensor number

or transducer angle.

C. Systematic Strategies

Though we propose PSA and MSCC as effective mitiga-

tion methods to the attacks in this paper, systematic design

strategies are necessary for enhancing the reliability of the

overall sensing systems against future threats. We envision

that the security principle in designing ultrasonic sensor sys-

tems should adopt the following two complimentary aspects

simultaneously.

• Individual sensors should provide reliable measurements.

• Multiple sensors should collaborate to achieve reliability

which is otherwise impossible for individual sensors.

1) Securing Individual Sensors: For individual sensors,

each of their measurements can be enhanced independently

or collectively. PSA is an effective method to secure each

measurement independently, while Kalman Filters can be used

to improve the reliability of a sequence of measurement. A

Kalman Filter [34] fuses data measured in successive time

intervals to provide a maximum likelihood estimation of a

parameter, e.g., distance, and it is widely used to track obsta-

cles by filtering and prediction. Since most attacks introduce

abrupt changes to the sensor measurements, a Kalman Filter

could reduce the impact of transient attacks and detect attacks

by setting a threshold on the error correlation matrix.
2) Multi-Sensor Data Fusion: Three types of sensor fusion

are applicable to ultrasonic systems: complementary, com-

petitive, and cooperative. Complementary fusion refers to the

configuration that sensors do not directly depend on each other

but can be combined to provide a more complete image of

observation. It is the current configuration on most vehicles—

multiple sensors are installed around a vehicle in order to

detect obstacles from different directions. Competitive fusion
involves adding redundant sensors for the measurement of

the same obstacle. Since it is difficult for an adversary to

jam or spoof multiple sensors at the same time, a voting

scheme or confidence tags [35] can be used to indicate the

trustworthiness of an observation. Cooperative fusion derives

information that is unavailable from individual sensors. MFCC

is such a scheme that can estimate two-dimensional locations

and achieve resilient obstacle detection. Measurements from

ultrasonic sensors can also be fused at a higher level with other

types of sensors, e.g., cameras and Lidars, if there are any.

VI. DISCUSSION

Overhead of Defense. PSA requires to authenticate echoes

by waveform processing, which is a mature technology in

ultrasonic level measurement [31]. MSCC requires multiple

sensors to perform trilateration, which is a software based

solution and can be employed on vehicles to improve distance

measurement [18].
Defense Awareness. Even if the attacker is aware of the

defense mechanisms, she cannot predict the randomness of

PSA, or hide her geographical properties imposed by physical

laws from MSCC.
Dealing with Other Attacks. Other attacks that might

bypass our defense may be available, e.g., wide-band jamming

attack. However, we aim to raise the bar of attacks and let

automobiles make the best driving decision, e.g., a vehicle

could stop when it detects jamming attacks. In addition,

we encourage integrating information from different types of

sensors to improve the resilience against more attacks.
Dealing with Multiple Attackers. An attacker may want

to disrupt the defense mechanisms with multiple coordinated

transducers. However, PSA will be able to detect each attacker,

and MSCC can detect subtractive adaptive spoofing attacks

in the presence of multiple colluding attackers. Again, our

intention is to raise the bar of attacks, instead of building a

bulletproof system, and we invite researchers to improve the

reliability of sensors.

VII. RELATED WORK

Previous work on vehicle security mostly focused on the

digital communications inside and outside an automobile.
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The infrastructure of modern vehicles is designed in such

a way that all components are networked with each other

by the CAN-bus to exchange information. This structure

facilitates the functionality and efficiency of modern vehicles,

but poses a serious threat in addition to potential insecure

components [36], [37]. Several studies [38], [39] have shown

the feasibility of launching CAN-bus attacks, mainly through

OBD-II port, to cause malfunction and even take control of

the car. In addition, it is possible to launch attacks [23], [22]

remotely, if it contains external attack surfaces [40].

Several studies have examined the security of passive

sensors, e.g. microphones and medical devices [19], MEMS

gyroscopes [20], and MEMS accelerometers [21]. As for active

sensors, Petit et al. [41] and Shin et al. [42] examined the

security of LiDAR. The security of FMCW radars has been

studied in [43] without experiment on real cars. Shoukry et
al. [44] proposed a physical challenge-response authentication

scheme for magnetic encoders and RFID tags. We argue that

their methods may not apply well to ultrasonic sensors due

to the physical latency of acoustic vibration and piezoelectric

transducers, i.e., acoustic waves cannot change fast enough

to satisfy the scheme requirements as RF signals. Despite

the valuable insights gained from previous studies, different

types of sensors adopt distinct underlying physical principles,

therefore pose unique security challenges. We generalize our

methods as Physical Signal Level Attacks, validate this ap-

proach on real vehicles with autonomous driving system, and

propose enhancement strategies. Some topics of this paper

have been presented by the authors previously in a non-

academic talk [45].

The differentiation of ultrasonic probing signals has been

studied mainly for solving inter-sensor interference, by means

of TDMA scheduling [46], [47] or multi-code modula-

tions [48], [49]. The structure of multiple ultrasonic sensors

has been used for identifying multiple objects [50]. Spatial-

temporal phase dynamics has been utilized for RFID-based

relative object localization [51]. These schemes are mainly

developed for applications (e.g., target tracking and RFID)

rather than automobiles, and do not consider malicious attacks

on vehicular sensors.

VIII. CONCLUSION

The reliability of ultrasonic sensors remains a critical ques-

tion, especially when it shapes the safety of autonomous

vehicles. Our work validated the feasibility of three types

of attacks—random spoofing, adaptive spoofing, and jamming

attacks—on ultrasonic sensors, and show that they can cause

incorrect driving decisions on moving vehicles in autonomous

driving. To enhance the reliability of ultrasonic sensors, we

proposed two types of defense strategies, single-sensor based

Physical Shift Authentication (PSA) and Multi-Sensor based

Consistency Check (MSCC).

APPENDIX A

RESPONSIBLE DISCLOSURE

We have informed Tesla Motors Inc. in January and June

2016 about the vulnerabilities reported in this paper, and

discussed improvement with the product security team in July

2016. They have acknowledged our findings, and are in the

process of improving these sensors and systems. A Tier-1

sensor supplier, Bosch, has also been informed.
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